import os import gradio as gr from pipelines.pipeline import InferencePipeline pipelines = { "VSR(mediapipe)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cpu", face_track=True, detector="mediapipe"), "ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cpu", face_track=True, detector="mediapipe"), "AVSR(mediapipe)": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cpu", face_track=True, detector="mediapipe") } print("Step 0. Model has been loaded.") def fn(pipeline_type, filename): print("Step 0. Video has been uploaded.") selected_pipeline_instance = pipelines[pipeline_type] print("Step 1. Video has been converted.") landmarks = selected_pipeline_instance.process_landmarks(filename, landmarks_filename=None) print("Step 2. Landmarks have been detected.") data = selected_pipeline_instance.dataloader.load_data(filename, landmarks) print("Step 3. Data has been preprocessed.") transcript = selected_pipeline_instance.model.infer(data) print("Step 4. Inference has been done.") print(f"transcript: {transcript}") return transcript demo = gr.Blocks() with demo: gr.HTML( """

Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels

""" ) dropdown_list = gr.inputs.Dropdown(["ASR", "VSR(mediapipe)", "AVSR(mediapipe)"], label="model") video_file = gr.Video(label="INPUT VIDEO", include_audio=True) text = gr.Textbox(label="PREDICTION") btn = gr.Button("Submit").style(full_width=True) btn.click(fn, inputs=[dropdown_list, video_file], outputs=text) with gr.Accordion("Additional information", open=False): gr.HTML( """

We used retinaface for training, but for the demo we used mediapipe

We share this demo only for non-commercial purposes.

""" ) demo.launch()