import os import gradio as gr from pipelines.pipeline import InferencePipeline pipelines = { "VSR(mediapipe)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cpu", face_track=True, detector="mediapipe"), "ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cpu", face_track=True, detector="mediapipe"), "AVSR(mediapipe)": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cpu", face_track=True, detector="mediapipe") } print("Step 0. Model has been loaded.") def fn(pipeline_type, filename): print("Step 0. Video has been uploaded.") selected_pipeline_instance = pipelines[pipeline_type] print("Step 1. Video has been converted.") landmarks = selected_pipeline_instance.process_landmarks(filename, landmarks_filename=None) print("Step 2. Landmarks have been detected.") data = selected_pipeline_instance.dataloader.load_data(filename, landmarks) print("Step 3. Data has been preprocessed.") transcript = selected_pipeline_instance.model.infer(data) print("Step 4. Inference has been done.") print(f"transcript: {transcript}") return transcript demo = gr.Blocks() with demo: gr.HTML( """
We used retinaface for training, but for the demo we used mediapipe
We share this demo only for non-commercial purposes.