# -*- coding: utf-8 -*- """Network related utility tools.""" import logging from typing import Dict import numpy as np import torch def to_device(m, x): """Send tensor into the device of the module. Args: m (torch.nn.Module): Torch module. x (Tensor): Torch tensor. Returns: Tensor: Torch tensor located in the same place as torch module. """ if isinstance(m, torch.nn.Module): device = next(m.parameters()).device elif isinstance(m, torch.Tensor): device = m.device else: raise TypeError( "Expected torch.nn.Module or torch.tensor, " f"bot got: {type(m)}" ) return x.to(device) def pad_list(xs, pad_value): """Perform padding for the list of tensors. Args: xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)]. pad_value (float): Value for padding. Returns: Tensor: Padded tensor (B, Tmax, `*`). Examples: >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)] >>> x [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])] >>> pad_list(x, 0) tensor([[1., 1., 1., 1.], [1., 1., 0., 0.], [1., 0., 0., 0.]]) """ n_batch = len(xs) max_len = max(x.size(0) for x in xs) pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value) for i in range(n_batch): pad[i, : xs[i].size(0)] = xs[i] return pad def make_pad_mask(lengths, xs=None, length_dim=-1, maxlen=None): """Make mask tensor containing indices of padded part. Args: lengths (LongTensor or List): Batch of lengths (B,). xs (Tensor, optional): The reference tensor. If set, masks will be the same shape as this tensor. length_dim (int, optional): Dimension indicator of the above tensor. See the example. Returns: Tensor: Mask tensor containing indices of padded part. dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (including 1.2) Examples: With only lengths. >>> lengths = [5, 3, 2] >>> make_pad_mask(lengths) masks = [[0, 0, 0, 0 ,0], [0, 0, 0, 1, 1], [0, 0, 1, 1, 1]] With the reference tensor. >>> xs = torch.zeros((3, 2, 4)) >>> make_pad_mask(lengths, xs) tensor([[[0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 1], [0, 0, 0, 1]], [[0, 0, 1, 1], [0, 0, 1, 1]]], dtype=torch.uint8) >>> xs = torch.zeros((3, 2, 6)) >>> make_pad_mask(lengths, xs) tensor([[[0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1]], [[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]], [[0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8) With the reference tensor and dimension indicator. >>> xs = torch.zeros((3, 6, 6)) >>> make_pad_mask(lengths, xs, 1) tensor([[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1]], [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]], [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]]], dtype=torch.uint8) >>> make_pad_mask(lengths, xs, 2) tensor([[[0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1]], [[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]], [[0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8) """ if length_dim == 0: raise ValueError("length_dim cannot be 0: {}".format(length_dim)) if not isinstance(lengths, list): lengths = lengths.tolist() bs = int(len(lengths)) if maxlen is None: if xs is None: maxlen = int(max(lengths)) else: maxlen = xs.size(length_dim) else: assert xs is None assert maxlen >= int(max(lengths)) seq_range = torch.arange(0, maxlen, dtype=torch.int64) seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen) seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1) mask = seq_range_expand >= seq_length_expand if xs is not None: assert xs.size(0) == bs, (xs.size(0), bs) if length_dim < 0: length_dim = xs.dim() + length_dim # ind = (:, None, ..., None, :, , None, ..., None) ind = tuple( slice(None) if i in (0, length_dim) else None for i in range(xs.dim()) ) mask = mask[ind].expand_as(xs).to(xs.device) return mask def make_non_pad_mask(lengths, xs=None, length_dim=-1): """Make mask tensor containing indices of non-padded part. Args: lengths (LongTensor or List): Batch of lengths (B,). xs (Tensor, optional): The reference tensor. If set, masks will be the same shape as this tensor. length_dim (int, optional): Dimension indicator of the above tensor. See the example. Returns: ByteTensor: mask tensor containing indices of padded part. dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (including 1.2) Examples: With only lengths. >>> lengths = [5, 3, 2] >>> make_non_pad_mask(lengths) masks = [[1, 1, 1, 1 ,1], [1, 1, 1, 0, 0], [1, 1, 0, 0, 0]] With the reference tensor. >>> xs = torch.zeros((3, 2, 4)) >>> make_non_pad_mask(lengths, xs) tensor([[[1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 0], [1, 1, 1, 0]], [[1, 1, 0, 0], [1, 1, 0, 0]]], dtype=torch.uint8) >>> xs = torch.zeros((3, 2, 6)) >>> make_non_pad_mask(lengths, xs) tensor([[[1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0]], [[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0]], [[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8) With the reference tensor and dimension indicator. >>> xs = torch.zeros((3, 6, 6)) >>> make_non_pad_mask(lengths, xs, 1) tensor([[[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0]], [[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], [[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]], dtype=torch.uint8) >>> make_non_pad_mask(lengths, xs, 2) tensor([[[1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0]], [[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0]], [[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8) """ return ~make_pad_mask(lengths, xs, length_dim) def mask_by_length(xs, lengths, fill=0): """Mask tensor according to length. Args: xs (Tensor): Batch of input tensor (B, `*`). lengths (LongTensor or List): Batch of lengths (B,). fill (int or float): Value to fill masked part. Returns: Tensor: Batch of masked input tensor (B, `*`). Examples: >>> x = torch.arange(5).repeat(3, 1) + 1 >>> x tensor([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]) >>> lengths = [5, 3, 2] >>> mask_by_length(x, lengths) tensor([[1, 2, 3, 4, 5], [1, 2, 3, 0, 0], [1, 2, 0, 0, 0]]) """ assert xs.size(0) == len(lengths) ret = xs.data.new(*xs.size()).fill_(fill) for i, l in enumerate(lengths): ret[i, :l] = xs[i, :l] return ret def th_accuracy(pad_outputs, pad_targets, ignore_label): """Calculate accuracy. Args: pad_outputs (Tensor): Prediction tensors (B * Lmax, D). pad_targets (LongTensor): Target label tensors (B, Lmax, D). ignore_label (int): Ignore label id. Returns: float: Accuracy value (0.0 - 1.0). """ pad_pred = pad_outputs.view( pad_targets.size(0), pad_targets.size(1), pad_outputs.size(1) ).argmax(2) mask = pad_targets != ignore_label numerator = torch.sum( pad_pred.masked_select(mask) == pad_targets.masked_select(mask) ) denominator = torch.sum(mask) return float(numerator) / float(denominator) def to_torch_tensor(x): """Change to torch.Tensor or ComplexTensor from numpy.ndarray. Args: x: Inputs. It should be one of numpy.ndarray, Tensor, ComplexTensor, and dict. Returns: Tensor or ComplexTensor: Type converted inputs. Examples: >>> xs = np.ones(3, dtype=np.float32) >>> xs = to_torch_tensor(xs) tensor([1., 1., 1.]) >>> xs = torch.ones(3, 4, 5) >>> assert to_torch_tensor(xs) is xs >>> xs = {'real': xs, 'imag': xs} >>> to_torch_tensor(xs) ComplexTensor( Real: tensor([1., 1., 1.]) Imag; tensor([1., 1., 1.]) ) """ # If numpy, change to torch tensor if isinstance(x, np.ndarray): if x.dtype.kind == "c": # Dynamically importing because torch_complex requires python3 from torch_complex.tensor import ComplexTensor return ComplexTensor(x) else: return torch.from_numpy(x) # If {'real': ..., 'imag': ...}, convert to ComplexTensor elif isinstance(x, dict): # Dynamically importing because torch_complex requires python3 from torch_complex.tensor import ComplexTensor if "real" not in x or "imag" not in x: raise ValueError("has 'real' and 'imag' keys: {}".format(list(x))) # Relative importing because of using python3 syntax return ComplexTensor(x["real"], x["imag"]) # If torch.Tensor, as it is elif isinstance(x, torch.Tensor): return x else: error = ( "x must be numpy.ndarray, torch.Tensor or a dict like " "{{'real': torch.Tensor, 'imag': torch.Tensor}}, " "but got {}".format(type(x)) ) try: from torch_complex.tensor import ComplexTensor except Exception: # If PY2 raise ValueError(error) else: # If PY3 if isinstance(x, ComplexTensor): return x else: raise ValueError(error) def get_subsample(train_args, mode, arch): """Parse the subsampling factors from the args for the specified `mode` and `arch`. Args: train_args: argument Namespace containing options. mode: one of ('asr', 'mt', 'st') arch: one of ('rnn', 'rnn-t', 'rnn_mix', 'rnn_mulenc', 'transformer') Returns: np.ndarray / List[np.ndarray]: subsampling factors. """ if arch == "transformer": return np.array([1]) elif mode == "mt" and arch == "rnn": # +1 means input (+1) and layers outputs (train_args.elayer) subsample = np.ones(train_args.elayers + 1, dtype=np.int) logging.warning("Subsampling is not performed for machine translation.") logging.info("subsample: " + " ".join([str(x) for x in subsample])) return subsample elif ( (mode == "asr" and arch in ("rnn", "rnn-t")) or (mode == "mt" and arch == "rnn") or (mode == "st" and arch == "rnn") ): subsample = np.ones(train_args.elayers + 1, dtype=np.int) if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"): ss = train_args.subsample.split("_") for j in range(min(train_args.elayers + 1, len(ss))): subsample[j] = int(ss[j]) else: logging.warning( "Subsampling is not performed for vgg*. " "It is performed in max pooling layers at CNN." ) logging.info("subsample: " + " ".join([str(x) for x in subsample])) return subsample elif mode == "asr" and arch == "rnn_mix": subsample = np.ones( train_args.elayers_sd + train_args.elayers + 1, dtype=np.int ) if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"): ss = train_args.subsample.split("_") for j in range( min(train_args.elayers_sd + train_args.elayers + 1, len(ss)) ): subsample[j] = int(ss[j]) else: logging.warning( "Subsampling is not performed for vgg*. " "It is performed in max pooling layers at CNN." ) logging.info("subsample: " + " ".join([str(x) for x in subsample])) return subsample elif mode == "asr" and arch == "rnn_mulenc": subsample_list = [] for idx in range(train_args.num_encs): subsample = np.ones(train_args.elayers[idx] + 1, dtype=np.int) if train_args.etype[idx].endswith("p") and not train_args.etype[ idx ].startswith("vgg"): ss = train_args.subsample[idx].split("_") for j in range(min(train_args.elayers[idx] + 1, len(ss))): subsample[j] = int(ss[j]) else: logging.warning( "Encoder %d: Subsampling is not performed for vgg*. " "It is performed in max pooling layers at CNN.", idx + 1, ) logging.info("subsample: " + " ".join([str(x) for x in subsample])) subsample_list.append(subsample) return subsample_list else: raise ValueError("Invalid options: mode={}, arch={}".format(mode, arch)) def rename_state_dict( old_prefix: str, new_prefix: str, state_dict: Dict[str, torch.Tensor] ): """Replace keys of old prefix with new prefix in state dict.""" # need this list not to break the dict iterator old_keys = [k for k in state_dict if k.startswith(old_prefix)] if len(old_keys) > 0: logging.warning(f"Rename: {old_prefix} -> {new_prefix}") for k in old_keys: v = state_dict.pop(k) new_k = k.replace(old_prefix, new_prefix) state_dict[new_k] = v def get_activation(act): """Return activation function.""" # Lazy load to avoid unused import from espnet.nets.pytorch_backend.conformer.swish import Swish activation_funcs = { "hardtanh": torch.nn.Hardtanh, "tanh": torch.nn.Tanh, "relu": torch.nn.ReLU, "selu": torch.nn.SELU, "swish": Swish, } return activation_funcs[act]() class MLPHead(torch.nn.Module): def __init__(self, idim, hdim, odim, norm="batchnorm"): super(MLPHead, self).__init__() self.norm = norm self.fc1 = torch.nn.Linear(idim, hdim) if norm == "batchnorm": self.bn1 = torch.nn.BatchNorm1d(hdim) elif norm == "layernorm": self.norm1 = torch.nn.LayerNorm(hdim) self.nonlin1 = torch.nn.ReLU(inplace=True) self.fc2 = torch.nn.Linear( hdim, odim) def forward(self, x): x = self.fc1(x) if self.norm == "batchnorm": x = self.bn1(x.transpose(1,2)).transpose(1,2) elif self.norm == "layernorm": x = self.norm1(x) x = self.nonlin1(x) x = self.fc2(x) return x