mp-02 commited on
Commit
124bac3
1 Parent(s): b4a0c35

Delete cord_inference.py

Browse files
Files changed (1) hide show
  1. cord_inference.py +0 -81
cord_inference.py DELETED
@@ -1,81 +0,0 @@
1
- import torch
2
- import numpy as np
3
- from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
4
- from PIL import Image, ImageDraw, ImageFont
5
- from utils import OCR, unnormalize_box
6
-
7
-
8
- labels = ["O", "B-MENU.NM", "B-MENU.NUM", "B-MENU.UNITPRICE", "B-MENU.CNT", "B-MENU.DISCOUNTPRICE", "B-MENU.PRICE", "B-MENU.ITEMSUBTOTAL", "B-MENU.VATYN", "B-MENU.ETC", "B-MENU.SUB.NM", "B-MENU.SUB.UNITPRICE", "B-MENU.SUB.CNT", "B-MENU.SUB.PRICE", "B-MENU.SUB.ETC", "B-VOID_MENU.NM", "B-VOID_MENU.PRICE", "B-SUB_TOTAL.SUBTOTAL_PRICE", "B-SUB_TOTAL.DISCOUNT_PRICE", "B-SUB_TOTAL.SERVICE_PRICE", "B-SUB_TOTAL.OTHERSVC_PRICE", "B-SUB_TOTAL.TAX_PRICE", "B-SUB_TOTAL.ETC", "B-TOTAL.TOTAL_PRICE", "B-TOTAL.TOTAL_ETC", "B-TOTAL.CASHPRICE", "B-TOTAL.CHANGEPRICE", "B-TOTAL.CREDITCARDPRICE", "B-TOTAL.EMONEYPRICE", "B-TOTAL.MENUTYPE_CNT", "B-TOTAL.MENUQTY_CNT", "I-MENU.NM", "I-MENU.NUM", "I-MENU.UNITPRICE", "I-MENU.CNT", "I-MENU.DISCOUNTPRICE", "I-MENU.PRICE", "I-MENU.ITEMSUBTOTAL", "I-MENU.VATYN", "I-MENU.ETC", "I-MENU.SUB.NM", "I-MENU.SUB.UNITPRICE", "I-MENU.SUB.CNT", "I-MENU.SUB.PRICE", "I-MENU.SUB.ETC", "I-VOID_MENU.NM", "I-VOID_MENU.PRICE", "I-SUB_TOTAL.SUBTOTAL_PRICE", "I-SUB_TOTAL.DISCOUNT_PRICE", "I-SUB_TOTAL.SERVICE_PRICE", "I-SUB_TOTAL.OTHERSVC_PRICE", "I-SUB_TOTAL.TAX_PRICE", "I-SUB_TOTAL.ETC", "I-TOTAL.TOTAL_PRICE", "I-TOTAL.TOTAL_ETC", "I-TOTAL.CASHPRICE", "I-TOTAL.CHANGEPRICE", "I-TOTAL.CREDITCARDPRICE", "I-TOTAL.EMONEYPRICE", "I-TOTAL.MENUTYPE_CNT", "I-TOTAL.MENUQTY_CNT"]
9
- id2label = {v: k for v, k in enumerate(labels)}
10
- label2id = {k: v for v, k in enumerate(labels)}
11
-
12
- tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-finetuned-cord", apply_ocr=False)
13
- processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-finetuned-cord", apply_ocr=False)
14
- model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-finetuned-cord")
15
-
16
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
17
- model.to(device)
18
-
19
-
20
- def prediction(image_path: str):
21
- image = Image.open(image_path).convert('RGB')
22
- boxes, words = OCR(image_path)
23
- encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True)
24
- offset_mapping = encoding.pop('offset_mapping')
25
-
26
- for k, v in encoding.items():
27
- encoding[k] = v.to(device)
28
-
29
- outputs = model(**encoding)
30
-
31
- predictions = outputs.logits.argmax(-1).squeeze().tolist()
32
- token_boxes = encoding.bbox.squeeze().tolist()
33
-
34
- inp_ids = encoding.input_ids.squeeze().tolist()
35
- inp_words = [tokenizer.decode(i) for i in inp_ids]
36
-
37
- width, height = image.size
38
- is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
39
-
40
- true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
41
- true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
42
- true_words = []
43
-
44
- for id, i in enumerate(inp_words):
45
- if not is_subword[id]:
46
- true_words.append(i)
47
- else:
48
- true_words[-1] = true_words[-1]+i
49
-
50
- true_predictions = true_predictions[1:-1]
51
- true_boxes = true_boxes[1:-1]
52
- true_words = true_words[1:-1]
53
-
54
- preds = []
55
- l_words = []
56
- bboxes = []
57
-
58
- for i, j in enumerate(true_predictions):
59
- if j != 'others':
60
- preds.append(true_predictions[i])
61
- l_words.append(true_words[i])
62
- bboxes.append(true_boxes[i])
63
-
64
- d = {}
65
- for id, i in enumerate(preds):
66
- if i not in d.keys():
67
- d[i] = l_words[id]
68
- else:
69
- d[i] = d[i] + ", " + l_words[id]
70
- d = {k: v.strip() for (k, v) in d.items()}
71
-
72
- # TODO: process the json
73
-
74
- draw = ImageDraw.Draw(image, "RGBA")
75
- font = ImageFont.load_default()
76
-
77
- for prediction, box in zip(preds, bboxes):
78
- draw.rectangle(box)
79
- draw.text((box[0]+10, box[1]-10), text=prediction, font=font, fill="black")
80
-
81
- return d, image