File size: 11,374 Bytes
49c6db7 8786ac3 49c6db7 f0821bf 44c9541 e16c5c4 3e66137 47accba 3e66137 47accba 266f336 47accba 465186b 3e66137 d874e72 3e66137 2fefa26 d51d5c4 2fefa26 3e66137 49c6db7 ef2c520 49c6db7 3e66137 49c6db7 f0821bf fd26ead 49c6db7 f0821bf 1c5339e f0821bf c034f55 736285e c034f55 ea7f537 49c6db7 bf308b6 49c6db7 32b0ba4 49c6db7 eeb07d9 ded4361 a887322 c994db7 a887322 c08aa90 c994db7 c08aa90 c994db7 c08aa90 c994db7 c08aa90 a887322 522173e 8742230 16f935e 8742230 c08aa90 16f935e c08aa90 a887322 49c6db7 18b4441 8a8ccfd 18b4441 49c6db7 958ea27 49c6db7 18b4441 958ea27 18b4441 4c3c584 eecd9f2 7902217 b2eef14 e16c5c4 b2eef14 e16c5c4 7170f20 e16c5c4 7170f20 e16c5c4 4c3c584 7170f20 49c6db7 2c27168 49c6db7 fd1e2f9 25641bf 2d8800e 16b034a 4d69653 93d755b cb2e681 93d755b cb2e681 93d755b 5bf1496 2d8800e 2c27168 c77528c 2c27168 c3abe48 a6f1288 03ae964 2e35a3d 1fe72e5 22bab81 03ae964 daeff40 e19ebf3 fd26ead 18b4441 03ae964 16b034a c0e39ef 18b4441 03ae964 a6f1288 03ae964 c3abe48 7902217 4d163cf a6f1288 b2eef14 fd26ead 5bf1496 22bab81 a3dc09f 25641bf 2c27168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import numpy as np
import gradio as gr
import spaces
import cv2
from cellpose import models
from matplotlib.colors import hsv_to_rgb
import matplotlib.pyplot as plt
import os, io, base64
from PIL import Image
from cellpose.io import imread, imsave
from huggingface_hub import hf_hub_download
# @title Data retrieval
def download_weights():
return hf_hub_download(repo_id="mouseland/cellpose-sam", filename="cpsam")
#os.system("wget -q https://huggingface.co/mouseland/cellpose-sam/resolve/main/cpsam")
def download_weights_old():
import os, requests
fname = ['cpsam']
url = ["https://osf.io/d7c8e/download"]
for j in range(len(url)):
if not os.path.isfile(fname[j]):
ntries = 0
while ntries<10:
try:
r = requests.get(url[j])
except:
print("!!! Failed to download data !!!")
ntries += 1
print(ntries)
if r.status_code != requests.codes.ok:
print("!!! Failed to download data !!!")
else:
with open(fname[j], "wb") as fid:
fid.write(r.content)
try:
#fpath = download_weights()
model = models.CellposeModel(gpu=True)# , pretrained_model=fpath)
except Exception as e:
print(f"Error loading model: {e}")
exit(1)
def plot_flows(y):
Y = (np.clip(normalize99(y[0][0]),0,1) - 0.5) * 2
X = (np.clip(normalize99(y[1][0]),0,1) - 0.5) * 2
H = (np.arctan2(Y, X) + np.pi) / (2*np.pi)
S = normalize99(y[0][0]**2 + y[1][0]**2)
HSV = np.concatenate((H[:,:,np.newaxis], S[:,:,np.newaxis], S[:,:,np.newaxis]), axis=-1)
HSV = np.clip(HSV, 0.0, 1.0)
flow = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
return flow
def plot_outlines(img, masks):
img = normalize99(img)
outpix = []
contours, hierarchy = cv2.findContours(masks.astype(np.int32), mode=cv2.RETR_FLOODFILL, method=cv2.CHAIN_APPROX_SIMPLE)
for c in range(len(contours)):
pix = contours[c].astype(int).squeeze()
if len(pix)>4:
peri = cv2.arcLength(contours[c], True)
approx = cv2.approxPolyDP(contours[c], 0.001, True)[:,0,:]
outpix.append(approx)
figsize = (6,6)
if img.shape[0]>img.shape[1]:
figsize = (6*img.shape[1]/img.shape[0], 6)
else:
figsize = (6, 6*img.shape[0]/img.shape[1])
fig = plt.figure(figsize=figsize, facecolor='k')
ax = fig.add_axes([0.0,0.0,1,1])
ax.set_xlim([0,img.shape[1]])
ax.set_ylim([0,img.shape[0]])
ax.imshow(img[::-1], origin='upper', aspect = 'auto')
if outpix is not None:
for o in outpix:
ax.plot(o[:,0], img.shape[0]-o[:,1], color=[1,0,0], lw=1)
ax.axis('off')
#bytes_image = io.BytesIO()
#plt.savefig(bytes_image, format='png', facecolor=fig.get_facecolor(), edgecolor='none')
#bytes_image.seek(0)
#img_arr = np.frombuffer(bytes_image.getvalue(), dtype=np.uint8)
#bytes_image.close()
#img = cv2.imdecode(img_arr, 1)
#img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#del bytes_image
#fig.clf()
#plt.close(fig)
buf = io.BytesIO()
fig.savefig(buf, bbox_inches='tight')
buf.seek(0)
pil_img = Image.open(buf)
return pil_img
def plot_overlay(img, masks):
if img.ndim>2:
img_gray = img.astype(np.float32).mean(axis=-1)
else:
img_gray = img.astype(np.float32)
img = normalize99(img_gray)
img -= img.min()
img /= img.max()
HSV = np.zeros((img.shape[0], img.shape[1], 3), np.float32)
HSV[:,:,2] = np.clip(img*1.5, 0, 1.0)
for n in range(int(masks.max())):
ipix = (masks==n+1).nonzero()
HSV[ipix[0],ipix[1],0] = np.random.rand()
HSV[ipix[0],ipix[1],1] = 1.0
RGB = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
return RGB
def normalize99(img):
X = img.copy()
X = (X - np.percentile(X, 1)) / (np.percentile(X, 99) - np.percentile(X, 1))
return X
def image_resize(img, resize=400):
ny,nx = img.shape[:2]
if np.array(img.shape).max() > resize:
if ny>nx:
nx = int(nx/ny * resize)
ny = resize
else:
ny = int(ny/nx * resize)
nx = resize
shape = (nx,ny)
img = cv2.resize(img, shape)
img = img.astype(np.uint8)
return img
@spaces.GPU(duration=10)
def run_model_gpu(img):
masks, flows, _ = model.eval(img)#, channels = [0,0])
return masks, flows
@spaces.GPU(duration=60)
def run_model_gpu60(img):
masks, flows, _ = model.eval(img)#, channels = [0,0])
return masks, flows
@spaces.GPU(duration=240)
def run_model_gpu240(img):
masks, flows, _ = model.eval(img)#, channels = [0,0])
return masks, flows
@spaces.GPU(duration=1000)
def run_model_gpu1000(img):
masks, flows, _ = model.eval(img)#, channels = [0,0])
return masks, flows
#@spaces.GPU(duration=10)
def cellpose_segment(img_pil, resize = 1000):
img_input = imread(img_pil)
print(img_input.shape)
#img_input = np.array(img_pil)
img = image_resize(img_input, resize = resize)
print(img.shape)
resize = np.max(img.shape)
if resize<1000:
masks, flows = run_model_gpu(img)
elif resize < 5000:
masks, flows = run_model_gpu60(img)
elif resize < 20000:
masks, flows = run_model_gpu240(img)
else:
raise ValueError("Image size must be less than 20,000")
#masks, flows, _ = model.eval(img, channels=[0,0])
flows = flows[0]
# masks = np.zeros(img.shape[:2])
# flows = np.zeros_like(img)
outpix = plot_outlines(img, masks)
overlay = plot_overlay(img, masks)
target_size = (img_input.shape[1], img_input.shape[0])
if (target_size[0]!=img.shape[1] or target_size[1]!=img.shape[0]):
# scale it back to keep the orignal size
masks = cv2.resize(masks.astype('uint16'), target_size, interpolation=cv2.INTER_NEAREST).astype('uint16')
#flows = cv2.resize(flows.astype('float32'), target_size).astype('uint8')
#crand = .2 + .8 * np.random.rand(np.max(masks.flatten()).astype('int')+1,).astype('float32')
#crand[0] = 0
overlay = Image.fromarray(overlay)
flows = Image.fromarray(flows)
Ly, Lx = img.shape[:2]
c = Lx
outpix = outpix.resize((Lx, Ly), resample = Image.BICUBIC)
overlay = overlay.resize((Lx, Ly), resample = Image.BICUBIC)
flows = flows.resize((Lx, Ly), resample = Image.BICUBIC)
#masks = Image.fromarray(255. * crand[masks])
#pil_masks = Image.fromarray(masks.astype('int32'))
#pil_masks.save(fname_mask)
fname_out = os.path.splitext(img_pil)[0]+"_outlines.png"
fname_masks = os.path.splitext(img_pil)[0]+"_masks.tif"
imsave(fname_masks, masks)
outpix.save(fname_out) #"outlines.png")
b1 = gr.DownloadButton(visible=True, value = fname_masks)
b2 = gr.DownloadButton(visible=True, value = fname_out) #"outlines.png")
return outpix, overlay, flows, b1, b2
# Gradio Interface
#iface = gr.Interface(
# fn=cellpose_segment,
# inputs="image",
# outputs=["image", "image", "image", "image"],
# title="cellpose segmentation",
# description="upload an image, then cellpose will segment it at a max size of 400x400 (for full functionality, 'pip install cellpose' locally)"
#)
def download_function():
b1 = gr.DownloadButton("Download masks as TIFF", visible=False)
b2 = gr.DownloadButton("Download outline image as PNG", visible=False)
return b1, b2
def upload_file(filepath):
img = imread(filepath)
img = normalize99(img)
img = np.clip(img, 0, 1)
filegui = os.path.splitext(filepath)[0]+"_gui.png"
imsave(filegui, img)
b1 = gr.DownloadButton("Download masks as TIFF", visible=False)
b2 = gr.DownloadButton("Download outline image as PNG", visible=False)
return filegui, filepath, b1, b2
def update_image(filepath):
img = imread(filepath)
img = normalize99(img)
img = np.clip(img, 0, 1)
#b1 = gr.DownloadButton("Download masks as TIFF", visible=False)
#b2 = gr.DownloadButton("Download outline image as PNG", visible=False)
return input_image, filepath#, b1, b2
with gr.Blocks(title = "Hello",
css=".gradio-container {background:purple;}") as demo:
#filepath = ""
with gr.Row():
with gr.Column(scale=2):
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:20pt; font-weight:bold; text-align:center; color:white;">Cellpose-SAM for cellular segmentation</div>""")
gr.HTML("""<h4 style="color:white;">You may need to login/refresh for 5 minutes of free GPU compute per day (enough to process hundreds of images). </h4>""")
input_image = gr.Image(label = "Input", type = "filepath")
with gr.Row():
with gr.Column(scale=1):
resize = gr.Number(label = 'max resize', value = 1000)
gr.HTML("""<h4 style="color:white;"> Notes:<br> <li>you can load and process tifs, but they won't display in the input field above. </h4>""")
#gr.HTML("""<h4 style="color:white;"> Note2: Only the first image of a tif will display the segmentations, but you can download segmentations for all planes. </h4>""")
#filepath = gr.UploadButton("Upload (png, jpg, tif etc)", visible=True, file_count = "single")
with gr.Column(scale=1):
send_btn = gr.Button("Run Cellpose-SAM")
down_btn = gr.DownloadButton("Download masks (TIF)", visible=False)
down_btn2 = gr.DownloadButton("Download outlines (PNG)", visible=False)
with gr.Row():
gr.HTML("""<a style="color:white; font-size:14pt;" href="https://github.com/MouseLand/cellpose" target="_blank">Github page</a>""")
gr.HTML("""<a style="color:white; font-size:14pt;" href="https://github.com/MouseLand/cellpose" target="_blank">Paper</a>""")
gr.HTML("""<h4 style="color:white;">Install Cellpose-SAM locally for full functionality. </h4>""")
with gr.Column(scale=2):
img_outlines = gr.Image(label = "Outlines", type = "pil", format = 'png') #, width = "50vw", height = "20vw")
img_overlay = gr.Image(label = "Overlay", type = "pil", format = 'png') #, width = "50vw", height = "20vw")
flows = gr.Image(label = "Cellpose flows", type = "pil", format = 'png') #, width = "50vw", height = "20vw")
sample_list = []
for j in range(23):
sample_list.append("samples/img%0.2d.png"%j)
gr.Examples(sample_list, inputs=input_image, examples_per_page=25, label = "Click on an example to try it")
#input_image.change(update_image, input_image, [input_image, filepath])
#up_btn.upload(upload_file, up_btn, [input_image, up_btn, down_btn, down_btn2])
send_btn.click(cellpose_segment, [input_image, resize], [img_outlines, img_overlay, flows, down_btn, down_btn2])
#down_btn.click(download_function, None, [down_btn, down_btn2])
demo.launch()
|