import streamlit as st from streamlit_drawable_canvas import st_canvas import cv2 from tensorflow.keras.models import load_model import numpy as np from PIL import Image # Define the list of Arabic characters arabic_chars = ['alef','beh','teh','theh','jeem','hah','khah','dal','thal','reh','zain','seen','sheen', 'sad','dad','tah','zah','ain','ghain','feh','qaf','kaf','lam','meem','noon','heh','waw','yeh'] # Define the prediction function def predict_image(image, model_path): model = load_model(model_path) img = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY) img = cv2.resize(img, (32, 32)) img = img.reshape(1, 32, 32, 1) img = img.astype('float32') / 255.0 pred = model.predict(img) predicted_label = arabic_chars[np.argmax(pred)] return predicted_label # Streamlit app st.title("Arabic Character Recognition App") canvas_result = st_canvas( fill_color="rgba(255, 165, 0, 0.3)", # Filled color stroke_width=12, # Stroke width stroke_color="#000000", # Stroke color background_color="#ffffff", # Canvas background color update_streamlit=True, height=400, width=400, drawing_mode="freedraw", key="canvas", ) if canvas_result.image_data is not None: # Display the drawn image st.image(canvas_result.image_data) # Convert the canvas image data to a PIL image image = Image.fromarray(canvas_result.image_data.astype('uint8'), 'RGBA').convert('RGB') # Save the image to a temporary file temp_image_path = "temp_drawing.png" image.save(temp_image_path) # Predict the character model_path = "path_to_your_model.h5" # Update with your model path predicted_char = predict_image(image, model_path) # Display the predicted character st.subheader(f"Predicted Character: {predicted_char}")