import pandas as pd from sentence_transformers import SentenceTransformer, util class SongMatcher: def __init__(self, songs_data_file, model_name="sentence-transformers/all-mpnet-base-v2"): """ Initializes the SongMatcher with the songs data file and the SentenceTransformer model. :param songs_data_file: Path to the CSV file containing songs data :param model_name: Name of the SentenceTransformer model """ self.songs_df = pd.read_csv(songs_data_file) self.sim_model = SentenceTransformer(model_name) def match_songs_with_sentiment(user_sentiment_label, user_sentiment_score, user_input, score_range): # New: Define inputVector here inputVector = self.sim_model.encode(user_input) # Filter songs with the same sentiment label matched_songs = self.songs_df[self.songs_df['sentiment'] == user_sentiment_label] # Calculate the score range score_min = max(0, user_sentiment_score - score_range) score_max = min(1, user_sentiment_score + score_range) # Further filter songs whose scores fall within the specified range matched_songs = matched_songs[(matched_songs['score'] >= score_min) & (matched_songs['score'] <= score_max)] # Shuffle the matched songs to get a random order matched_songs = matched_songs.sample(frac=1).reset_index(drop=True) matched_songs['similarity'] = matched_songs['seq'].apply(lambda x: util.pytorch_cos_sim(sim_model.encode(x), inputVector)) top_5 = matched_songs['similarity'].sort_values(ascending=False).head(5) # Sort the songs by how close their score is to the user's sentiment score # matched_songs['score_diff'] = abs(matched_songs['score'] - user_sentiment_score) # matched_songs = matched_songs.sort_values(by='score_diff') # Select the top five songs and return return matched_songs.loc[top_5.index, ['song','artist','seq','similarity','sentiment','score']]