import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message="You are a friendly Chatbot.", max_tokens=1024, temperature=0.7, top_p=0.95, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ chat_balangay = gr.ChatInterface( respond, title = "Philippine OmniCorpus: A Knowledge Hub for Legal, Media, Cultural, and Historical Insights", examples = ["What are the key provisions of the Philippine Data Privacy Act?", "Please provide a summary of the coverage on the Taal Volcano eruption.","Tell me about the traditional festivals celebrated in the Philippines."], ) if __name__ == "__main__": chat_balangay.launch()