import spaces import functools import os import shutil import sys import git import gradio as gr import numpy as np import torch as torch from PIL import Image from gradio_imageslider import ImageSlider import spaces import argparse import os import logging import numpy as np import torch from PIL import Image from tqdm.auto import tqdm import glob import json import cv2 import sys from geo_models.geowizard_pipeline import DepthNormalEstimationPipeline from geo_utils.seed_all import seed_all import matplotlib.pyplot as plt from geo_utils.de_normalized import align_scale_shift from geo_utils.depth2normal import * from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL from geo_models.unet_2d_condition import UNet2DConditionModel from transformers import CLIPTextModel, CLIPTokenizer from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection import torchvision.transforms.functional as TF from torchvision.transforms import InterpolationMode device = spaces.gpu with spaces.capture_gpu_object() as gpu_object: vae = AutoencoderKL.from_pretrained(spaces.convert_root_path(), subfolder='vae') scheduler = DDIMScheduler.from_pretrained(spaces.convert_root_path(), subfolder='scheduler') image_encoder = CLIPVisionModelWithProjection.from_pretrained(spaces.convert_root_path(), subfolder="image_encoder") feature_extractor = CLIPImageProcessor.from_pretrained(spaces.convert_root_path(), subfolder="feature_extractor") unet = UNet2DConditionModel.from_pretrained(spaces.convert_root_path(), subfolder="unet") pipe = DepthNormalEstimationPipeline(vae=vae, image_encoder=image_encoder, feature_extractor=feature_extractor, unet=unet, scheduler=scheduler) outputs_dir = "./outputs" spaces.automatically_move_pipeline_components(pipe) spaces.automatically_move_to_gpu_when_forward(pipe.vae.encoder, target_model=pipe.vae) spaces.automatically_move_to_gpu_when_forward(pipe.vae.decoder, target_model=pipe.vae) spaces.automatically_move_to_gpu_when_forward(pipe.vae.post_quant_conv, target_model=pipe.vae) # spaces.change_attention_from_diffusers_to_forge(vae) # spaces.change_attention_from_diffusers_to_forge(unet) # pipe = pipe.to(device) @spaces.GPU(gpu_objects=gpu_object, manual_load=True) def depth_normal(img, denoising_steps, ensemble_size, processing_res, seed, domain): seed = int(seed) if seed >= 0: torch.manual_seed(seed) pipe_out = pipe( img, denoising_steps=denoising_steps, ensemble_size=ensemble_size, processing_res=processing_res, batch_size=0, domain=domain, show_progress_bar=True, ) depth_colored = Image.fromarray(((1. - pipe_out.depth_np) * 255.0).clip(0, 255).astype(np.uint8)) normal_colored = pipe_out.normal_colored return depth_colored, normal_colored def run_demo(): custom_theme = gr.themes.Soft(primary_hue="blue").set( button_secondary_background_fill="*neutral_100", button_secondary_background_fill_hover="*neutral_200") custom_css = '''#disp_image { text-align: center; /* Horizontally center the content */ }''' _TITLE = '''GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image''' _DESCRIPTION = '''
Generate consistent depth and normal from single image. High quality and rich details. (PS: We find the demo running on ZeroGPU output slightly inferior results compared to A100 or 3060 with everything exactly the same.)
''' _GPU_ID = 0 with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) with gr.Row(variant='panel'): with gr.Column(scale=1): input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image') example_folder = os.path.join(spaces.convert_root_path(), "files") example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] gr.Examples( examples=example_fns, inputs=[input_image], cache_examples=False, label='Examples (click one of the images below to start)', examples_per_page=30 ) with gr.Column(scale=1): with gr.Accordion('Advanced options', open=True): with gr.Column(): domain = gr.Radio( [ ("Outdoor", "outdoor"), ("Indoor", "indoor"), ("Object", "object"), ], label="Data Type (Must Select One matches your image)", value="indoor", ) denoising_steps = gr.Slider( label="Number of denoising steps (More steps, better quality)", minimum=1, maximum=50, step=1, value=10, ) ensemble_size = gr.Slider( label="Ensemble size (More steps, higher accuracy)", minimum=1, maximum=15, step=1, value=3, ) seed = gr.Number(0, label='Random Seed. Negative values for not specifying') processing_res = gr.Radio( [ ("Native", 0), ("Recommended", 768), ], label="Processing resolution", value=768, ) run_btn = gr.Button('Generate', variant='primary', interactive=True) with gr.Row(): with gr.Column(): depth = gr.Image(interactive=False, show_label=False) with gr.Column(): normal = gr.Image(interactive=False, show_label=False) run_btn.click(fn=depth_normal, inputs=[input_image, denoising_steps, ensemble_size, processing_res, seed, domain], outputs=[depth, normal] ) return demo demo = run_demo() if __name__ == '__main__': demo.queue().launch(share=True, max_threads=80)