import streamlit as st from mlpipeline import Pipeline import warnings warnings.filterwarnings('ignore') st.set_page_config(layout='wide') st.markdown( body="

Stellar Classification

", unsafe_allow_html=True ) col1, col2 = st.columns([1, 2]) with col1: # It can be any random value between 0 to 360. Doesn't contribute to model prediction. alpha = 150 # It can be any random value between 0 to 360. Doesn't contribute to model prediction. delta = 150 u = st.slider(label='Ultraviolet', min_value=0.0, max_value=30.0, value=22.0) g = st.slider(label='Green', min_value=0.0, max_value=30.0, value=22.0) r = st.slider(label='Red', min_value=0.0, max_value=30.0, value=25.0) i = st.slider(label='Infrared (I)', min_value=0.0, max_value=30.0, value=10.0) z = st.slider(label='Infrared (Z)', min_value=0.0, max_value=30.0, value=5.0) redshift = st.slider(label='Redshift', min_value=0.0, max_value=10.0, value=2.0) data = [[alpha, delta, u, g, r, i, z, redshift]] pipe = Pipeline(data=data) conclusion, fig, pred_class = pipe.pipeline() image_credits = "A random {} image taken from nasa.gov image gallery.".format( pred_class.lower()) conclusion = "

{}

".format(conclusion) image_credits = "

{}

".format(image_credits) with col2: st.markdown(body=conclusion, unsafe_allow_html=True) st.plotly_chart(figure_or_data=fig, use_container_width=True) st.markdown(body=image_credits, unsafe_allow_html=True)