Spaces:
Sleeping
Sleeping
Commit
·
c643b82
0
Parent(s):
First push
Browse files- .gitattributes +35 -0
- README.md +13 -0
- app.py +229 -0
- requirements.txt +1 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Deepseek R1 PF
|
3 |
+
emoji: 💬
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.0.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
app.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from transformers import (
|
6 |
+
TrainingArguments,
|
7 |
+
Trainer,
|
8 |
+
AutoModelForCausalLM,
|
9 |
+
AutoTokenizer,
|
10 |
+
DataCollatorForLanguageModeling
|
11 |
+
)
|
12 |
+
from datasets import Dataset
|
13 |
+
from peft import (
|
14 |
+
prepare_model_for_kbit_training,
|
15 |
+
LoraConfig,
|
16 |
+
get_peft_model
|
17 |
+
)
|
18 |
+
|
19 |
+
# Constants
|
20 |
+
MODEL_NAME = "deepseek-ai/DeepSeek-R1"
|
21 |
+
OUTPUT_DIR = "finetuned_models"
|
22 |
+
LOGS_DIR = "training_logs"
|
23 |
+
|
24 |
+
def save_uploaded_file(file):
|
25 |
+
"""Save uploaded file and return its path"""
|
26 |
+
os.makedirs('uploads', exist_ok=True)
|
27 |
+
file_path = os.path.join('uploads', file.name)
|
28 |
+
with open(file_path, 'wb') as f:
|
29 |
+
f.write(file.read())
|
30 |
+
return file_path
|
31 |
+
|
32 |
+
def prepare_training_components(
|
33 |
+
data_path,
|
34 |
+
learning_rate,
|
35 |
+
num_epochs,
|
36 |
+
batch_size,
|
37 |
+
model_name=MODEL_NAME
|
38 |
+
):
|
39 |
+
"""Prepare model, tokenizer, and training arguments"""
|
40 |
+
|
41 |
+
# Create output directory with timestamp
|
42 |
+
import time
|
43 |
+
timestamp = time.strftime("%Y%m%d_%H%M%S")
|
44 |
+
specific_output_dir = os.path.join(OUTPUT_DIR, f"run_{timestamp}")
|
45 |
+
os.makedirs(specific_output_dir, exist_ok=True)
|
46 |
+
os.makedirs(LOGS_DIR, exist_ok=True)
|
47 |
+
|
48 |
+
# Load tokenizer and model
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
model_name,
|
52 |
+
trust_remote_code=True,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
load_in_8bit=True
|
55 |
+
)
|
56 |
+
|
57 |
+
# LoRA Configuration
|
58 |
+
lora_config = LoraConfig(
|
59 |
+
r=16,
|
60 |
+
lora_alpha=32,
|
61 |
+
target_modules=[
|
62 |
+
"q_proj", "k_proj", "v_proj", "o_proj",
|
63 |
+
"gate_proj", "up_proj", "down_proj"
|
64 |
+
],
|
65 |
+
lora_dropout=0.05,
|
66 |
+
bias="none",
|
67 |
+
task_type="CAUSAL_LM"
|
68 |
+
)
|
69 |
+
|
70 |
+
# Prepare model
|
71 |
+
model = prepare_model_for_kbit_training(model)
|
72 |
+
model = get_peft_model(model, lora_config)
|
73 |
+
|
74 |
+
# Training Arguments
|
75 |
+
training_args = TrainingArguments(
|
76 |
+
output_dir=specific_output_dir,
|
77 |
+
num_train_epochs=num_epochs,
|
78 |
+
per_device_train_batch_size=batch_size,
|
79 |
+
learning_rate=learning_rate,
|
80 |
+
fp16=True,
|
81 |
+
gradient_accumulation_steps=8,
|
82 |
+
gradient_checkpointing=True,
|
83 |
+
logging_dir=os.path.join(LOGS_DIR, f"run_{timestamp}"),
|
84 |
+
logging_steps=10,
|
85 |
+
save_strategy="epoch",
|
86 |
+
evaluation_strategy="epoch",
|
87 |
+
save_total_limit=2,
|
88 |
+
)
|
89 |
+
|
90 |
+
# Load and prepare dataset
|
91 |
+
with open(data_path, 'r') as f:
|
92 |
+
raw_data = json.load(f)
|
93 |
+
|
94 |
+
# Convert to datasets format
|
95 |
+
dataset = Dataset.from_dict({
|
96 |
+
'text': [item['text'] for item in raw_data]
|
97 |
+
})
|
98 |
+
|
99 |
+
# Create data collator
|
100 |
+
data_collator = DataCollatorForLanguageModeling(
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
mlm=False
|
103 |
+
)
|
104 |
+
|
105 |
+
return {
|
106 |
+
'model': model,
|
107 |
+
'tokenizer': tokenizer,
|
108 |
+
'training_args': training_args,
|
109 |
+
'dataset': dataset,
|
110 |
+
'data_collator': data_collator,
|
111 |
+
'output_dir': specific_output_dir
|
112 |
+
}
|
113 |
+
|
114 |
+
def train_model(
|
115 |
+
file,
|
116 |
+
learning_rate=2e-4,
|
117 |
+
num_epochs=3,
|
118 |
+
batch_size=4,
|
119 |
+
progress=gr.Progress()
|
120 |
+
):
|
121 |
+
"""Training function for Gradio interface"""
|
122 |
+
try:
|
123 |
+
# Save uploaded file
|
124 |
+
file_path = save_uploaded_file(file)
|
125 |
+
|
126 |
+
# Prepare components
|
127 |
+
progress(0.2, desc="Preparing training components...")
|
128 |
+
components = prepare_training_components(
|
129 |
+
file_path,
|
130 |
+
learning_rate,
|
131 |
+
num_epochs,
|
132 |
+
batch_size
|
133 |
+
)
|
134 |
+
|
135 |
+
# Initialize trainer
|
136 |
+
progress(0.4, desc="Initializing trainer...")
|
137 |
+
trainer = Trainer(
|
138 |
+
model=components['model'],
|
139 |
+
args=components['training_args'],
|
140 |
+
train_dataset=components['dataset'],
|
141 |
+
data_collator=components['data_collator'],
|
142 |
+
)
|
143 |
+
|
144 |
+
# Train
|
145 |
+
progress(0.5, desc="Training model...")
|
146 |
+
trainer.train()
|
147 |
+
|
148 |
+
# Save model and tokenizer
|
149 |
+
progress(0.9, desc="Saving model...")
|
150 |
+
trainer.save_model()
|
151 |
+
components['tokenizer'].save_pretrained(components['output_dir'])
|
152 |
+
|
153 |
+
progress(1.0, desc="Training complete!")
|
154 |
+
return f"Training completed! Model saved in {components['output_dir']}"
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
return f"Error during training: {str(e)}"
|
158 |
+
|
159 |
+
# Create Gradio interface
|
160 |
+
def create_interface():
|
161 |
+
with gr.Blocks() as demo:
|
162 |
+
gr.Markdown("# DeepSeek-R1 Model Finetuning Interface")
|
163 |
+
|
164 |
+
with gr.Row():
|
165 |
+
with gr.Column():
|
166 |
+
file_input = gr.File(
|
167 |
+
label="Upload Training Data (JSON)",
|
168 |
+
type="binary",
|
169 |
+
file_types=[".json"]
|
170 |
+
)
|
171 |
+
|
172 |
+
learning_rate = gr.Slider(
|
173 |
+
minimum=1e-5,
|
174 |
+
maximum=1e-3,
|
175 |
+
value=2e-4,
|
176 |
+
label="Learning Rate"
|
177 |
+
)
|
178 |
+
|
179 |
+
num_epochs = gr.Slider(
|
180 |
+
minimum=1,
|
181 |
+
maximum=10,
|
182 |
+
value=3,
|
183 |
+
step=1,
|
184 |
+
label="Number of Epochs"
|
185 |
+
)
|
186 |
+
|
187 |
+
batch_size = gr.Slider(
|
188 |
+
minimum=1,
|
189 |
+
maximum=8,
|
190 |
+
value=4,
|
191 |
+
step=1,
|
192 |
+
label="Batch Size"
|
193 |
+
)
|
194 |
+
|
195 |
+
train_button = gr.Button("Start Training")
|
196 |
+
|
197 |
+
with gr.Column():
|
198 |
+
output = gr.Textbox(label="Training Status")
|
199 |
+
|
200 |
+
train_button.click(
|
201 |
+
fn=train_model,
|
202 |
+
inputs=[file_input, learning_rate, num_epochs, batch_size],
|
203 |
+
outputs=output
|
204 |
+
)
|
205 |
+
|
206 |
+
gr.Markdown("""
|
207 |
+
## Instructions
|
208 |
+
1. Upload your training data in JSON format:
|
209 |
+
```json
|
210 |
+
[
|
211 |
+
{"text": "User: Question\nAssistant: Answer"},
|
212 |
+
{"text": "User: Another question\nAssistant: Another answer"}
|
213 |
+
]
|
214 |
+
```
|
215 |
+
2. Adjust training parameters if needed
|
216 |
+
3. Click 'Start Training'
|
217 |
+
4. Wait for training to complete
|
218 |
+
""")
|
219 |
+
|
220 |
+
return demo
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
# Create necessary directories
|
224 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
225 |
+
os.makedirs(LOGS_DIR, exist_ok=True)
|
226 |
+
|
227 |
+
# Launch Gradio interface
|
228 |
+
demo = create_interface()
|
229 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|