import torch class ContinuousODEScheduler(): def __init__(self, num_inference_steps=100, sigma_max=700.0, sigma_min=0.002, rho=7.0): self.sigma_max = sigma_max self.sigma_min = sigma_min self.rho = rho self.set_timesteps(num_inference_steps) def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0): ramp = torch.linspace(1-denoising_strength, 1, num_inference_steps) min_inv_rho = torch.pow(torch.tensor((self.sigma_min,)), (1 / self.rho)) max_inv_rho = torch.pow(torch.tensor((self.sigma_max,)), (1 / self.rho)) self.sigmas = torch.pow(max_inv_rho + ramp * (min_inv_rho - max_inv_rho), self.rho) self.timesteps = torch.log(self.sigmas) * 0.25 def step(self, model_output, timestep, sample, to_final=False): timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] sample *= (sigma*sigma + 1).sqrt() estimated_sample = -sigma / (sigma*sigma + 1).sqrt() * model_output + 1 / (sigma*sigma + 1) * sample if to_final or timestep_id + 1 >= len(self.timesteps): prev_sample = estimated_sample else: sigma_ = self.sigmas[timestep_id + 1] derivative = 1 / sigma * (sample - estimated_sample) prev_sample = sample + derivative * (sigma_ - sigma) prev_sample /= (sigma_*sigma_ + 1).sqrt() return prev_sample def return_to_timestep(self, timestep, sample, sample_stablized): # This scheduler doesn't support this function. pass def add_noise(self, original_samples, noise, timestep): timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] sample = (original_samples + noise * sigma) / (sigma*sigma + 1).sqrt() return sample def training_target(self, sample, noise, timestep): timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] target = (-(sigma*sigma + 1).sqrt() / sigma + 1 / (sigma*sigma + 1).sqrt() / sigma) * sample + 1 / (sigma*sigma + 1).sqrt() * noise return target def training_weight(self, timestep): timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] weight = (1 + sigma*sigma).sqrt() / sigma return weight