import gradio as gr import tiktoken import random # License Information # This application uses the following open-source libraries: # # 1. Gradio: # - License: Apache License 2.0 # - Copyright: 2020-2023, Gradio contributors # - Full License: http://www.apache.org/licenses/LICENSE-2.0 # # 2. tiktoken: # - License: MIT License # - Copyright: 2022, OpenAI, Shantanu Jain # - Full License: https://opensource.org/licenses/MIT # Load the tokenizers enc_gpt4o = tiktoken.encoding_for_model("gpt-4o") enc_gpt3_5turbo = tiktoken.encoding_for_model("gpt-3.5-turbo") def get_color_mapping(tokens): unique_tokens = list(set(tokens)) colors = ["#" + ''.join([random.choice('0123456789ABCDEF') for _ in range(6)]) for _ in unique_tokens] color_mapping = dict(zip(unique_tokens, colors)) return color_mapping def process_model(text, encoder, model_name): token_ids = encoder.encode(text) tokens = [encoder.decode([id]) for id in token_ids] num_tokens = len(tokens) color_mapping = get_color_mapping(tokens) modelname_html = f'

{model_name}

' tokens_colored = [f'{token}' for token in tokens] token_ids_colored = [f'{token_id}' for token, token_id in zip(tokens, token_ids)] tokens_html = f'

{model_name} Tokens

' + ' '.join(tokens_colored) num_tokens_html = f'

Number of Tokens: {num_tokens}

' token_ids_html = f'

{model_name} Token IDs

' + ' '.join(map(str, token_ids_colored)) return modelname_html + num_tokens_html + tokens_html + token_ids_html def tokenize_input(text): gpt4o_result = process_model(text, enc_gpt4o, "GPT-4o") gpt35turbo_result = process_model(text, enc_gpt3_5turbo, "GPT-3.5-turbo") num_chars = len(text) num_chars_html = f'

Number of Characters: {num_chars}

' return num_chars_html, gpt4o_result, gpt35turbo_result with gr.Blocks() as demo: gr.Markdown("## GPT4o vsGPT3.5 Token Comparison") with gr.Row(): input_text = gr.Textbox(lines=2, placeholder="Enter text here...", label="Enter text to tokenize and compare results between GPT-4o and GPT-3.5-turbo tokenizers.") num_chars_output = gr.HTML() with gr.Row(): gpt4o_output = gr.HTML(label="GPT-4o") gpt35turbo_output = gr.HTML(label="GPT-3.5-turbo") input_text.change(tokenize_input, inputs=[input_text], outputs=[num_chars_output, gpt4o_output, gpt35turbo_output]) input_text.submit(tokenize_input, inputs=[input_text], outputs=[num_chars_output, gpt4o_output, gpt35turbo_output]) gr.Markdown("""
### License Information This application uses the following open-source libraries: 1. **Gradio**: - License: Apache License 2.0 - Copyright: 2020-2023, Gradio contributors - Full License: [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0) - Repository: [Gradio GitHub](https://github.com/gradio-app/gradio/) 2. **tiktoken**: - License: MIT License - Copyright: 2022, OpenAI, Shantanu Jain - Full License: [MIT License](https://opensource.org/licenses/MIT) - Repository: [tiktoken GitHub](https://github.com/openai/tiktoken) """) # Launch the app demo.launch()