import gradio as gr from llama_cpp import Llama model = "SanctumAI/Meta-Llama-3-8B-Instruct-GGUF" llm = Llama.from_pretrained( repo_id=model, filename="meta-llama-3-8b-instruct.Q4_K_M.gguf", verbose=True, use_mmap=False, use_mlock=True, n_threads=2, n_threads_batch=2, n_ctx=4000, ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = llm.create_chat_completion( messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) return response["choices"][0]["message"]["content"] demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a helpful assistant.", label="System message", ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], description=model, ) if __name__ == "__main__": demo.launch()