import argparse import torch import os import numpy as np import datasets.crowd as crowd from network import pvt_cls as TCN import torch.nn.functional as F from scipy.io import savemat from sklearn.metrics import r2_score parser = argparse.ArgumentParser(description='Test ') parser.add_argument('--device', default='0', help='assign device') parser.add_argument('--batch-size', type=int, default=8, help='train batch size') parser.add_argument('--crop-size', type=int, default=256, help='the crop size of the train image') parser.add_argument('--model-path', type=str, default='/scratch/users/k2254235/ckpts/SEMI/Treeformer/best_model_mae-21.49_epoch-1759.pth', help='saved model path') parser.add_argument('--data-path', type=str, default='/users/k2254235/Lab/TCT/Dataset/London_103050/', help='dataset path') parser.add_argument('--dataset', type=str, default='TC') def test(args, isSave = True): os.environ['CUDA_VISIBLE_DEVICES'] = args.device # set vis gpu device = torch.device('cuda') model_path = args.model_path crop_size = args.crop_size data_path = args.data_path dataset = crowd.Crowd_TC(os.path.join(data_path, 'test_data'), crop_size, 1, method='val') dataloader = torch.utils.data.DataLoader(dataset, 1, shuffle=False, num_workers=1, pin_memory=True) model = TCN.pvt_treeformer(pretrained=False) model.to(device) model.load_state_dict(torch.load(model_path, device)) model.eval() image_errs = [] result = [] R2_es = [] R2_gt = [] l=0; for inputs, count, name, imgauss in dataloader: with torch.no_grad(): inputs = inputs.to(device) crop_imgs, crop_masks = [], [] b, c, h, w = inputs.size() rh, rw = args.crop_size, args.crop_size for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) crop_imgs.append(inputs[:, :, gis:gie, gjs:gje]) mask = torch.zeros([b, 1, h, w]).to(device) mask[:, :, gis:gie, gjs:gje].fill_(1.0) crop_masks.append(mask) crop_imgs, crop_masks = map(lambda x: torch.cat(x, dim=0), (crop_imgs, crop_masks)) crop_preds = [] nz, bz = crop_imgs.size(0), args.batch_size for i in range(0, nz, bz): gs, gt = i, min(nz, i + bz) crop_pred, _ = model(crop_imgs[gs:gt]) crop_pred = crop_pred[0] _, _, h1, w1 = crop_pred.size() crop_pred = F.interpolate(crop_pred, size=(h1 * 4, w1 * 4), mode='bilinear', align_corners=True) / 16 crop_preds.append(crop_pred) crop_preds = torch.cat(crop_preds, dim=0) #import pdb;pdb.set_trace() # splice them to the original size idx = 0 pred_map = torch.zeros([b, 1, h, w]).to(device) for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx] idx += 1 # for the overlapping area, compute average value mask = crop_masks.sum(dim=0).unsqueeze(0) outputs = pred_map / mask outputs = F.interpolate(outputs, size=(h, w), mode='bilinear', align_corners=True)/4 outputs = pred_map / mask img_err = count[0].item() - torch.sum(outputs).item() R2_gt.append(count[0].item()) R2_es.append(torch.sum(outputs).item()) print("Img name: ", name, "Error: ", img_err, "GT count: ", count[0].item(), "Model out: ", torch.sum(outputs).item()) image_errs.append(img_err) result.append([name, count[0].item(), torch.sum(outputs).item(), img_err]) savemat('predictions/'+name[0]+'.mat', {'estimation':np.squeeze(outputs.cpu().data.numpy()), 'image': np.squeeze(inputs.cpu().data.numpy()), 'gt': np.squeeze(imgauss.cpu().data.numpy())}) l=l+1 image_errs = np.array(image_errs) mse = np.sqrt(np.mean(np.square(image_errs))) mae = np.mean(np.abs(image_errs)) R_2 = r2_score(R2_gt,R2_es) print('{}: mae {}, mse {}, R2 {}\n'.format(model_path, mae, mse,R_2)) if isSave: with open("test.txt","w") as f: for i in range(len(result)): f.write(str(result[i]).replace('[','').replace(']','').replace(',', ' ')+"\n") f.close() if __name__ == '__main__': args = parser.parse_args() test(args, isSave= True)