import gradio as gr import torch from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("mmcquade11/autonlp-reuters-summarization-34018133") model = AutoModelWithLMHead.from_pretrained("mmcquade11/autonlp-reuters-summarization-34018133") def summarize(text): input_ids = torch.tensor(tokenizer.encode(text, add_special_tokens=True)).unsqueeze(0) summary_ids = model.generate(input_ids, num_beams=4, max_length=100, early_stopping=True) return tokenizer.decode(summary_ids[0], skip_special_tokens=True) def summarize_text(text): return summarize(text) iface = gr.Interface(summarize_text, "textbox", "label") if __name__ == "__main__": iface.launch()