import argparse import os import random import numpy as np import torch import torch.backends.cudnn as cudnn import gradio as gr from bliva.common.config import Config from bliva.common.dist_utils import get_rank from bliva.common.registry import registry from bliva.conversation.conversation import Chat, CONV_VISION, CONV_DIRECT # imports modules for registration from bliva.models import * from bliva.processors import * from bliva.models import load_model_and_preprocess from evaluate import disable_torch_init def parse_args(): parser = argparse.ArgumentParser(description="Demo") parser.add_argument("--model_name",default='bliva_vicuna', type=str, help='model name') parser.add_argument("--gpu_id", type=int, default=0, help="specify the gpu to load the model.") args = parser.parse_args() return args # ======================================== # Model Initialization # ======================================== print('Initializing Chat') args = parse_args() if torch.cuda.is_available(): device='cuda:{}'.format(args.gpu_id) else: device=torch.device('cpu') disable_torch_init() if args.model_name == "blip2_vicuna_instruct": model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="vicuna7b", is_eval=True, device=device) elif args.model_name == "bliva_vicuna": model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="vicuna7b", is_eval=True, device=device) elif args.model_name == "bliva_flant5": model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="flant5xxl", is_eval=True, device=device) else: print("Model not found") vis_processor = vis_processors["eval"] # vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train # vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) chat = Chat(model, vis_processor, device=device) print('Initialization Finished') # ======================================== # Gradio Setting # ======================================== def gradio_reset(chat_state, img_list): if chat_state is not None: chat_state.messages = [] if img_list is not None: img_list = [] return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list def upload_img(gr_img, text_input, chat_state): if gr_img is None: return None, None, gr.update(interactive=True), chat_state, None chat_state = CONV_DIRECT.copy() #CONV_VISION.copy() img_list = [] llm_message = chat.upload_img(gr_img, chat_state, img_list) return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list def gradio_ask(user_message, chatbot, chat_state): if len(user_message) == 0: return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state chat.ask(user_message, chat_state) chatbot = chatbot + [[user_message, None]] return '', chatbot, chat_state def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature): llm_message = chat.answer(conv=chat_state, img_list=img_list, num_beams=num_beams, temperature=temperature, max_new_tokens=300, max_length=2000)[0] chatbot[-1][1] = llm_message[0] return chatbot, chat_state, img_list title = """