import html import os from typing import AnyStr import nltk import streamlit as st import validators from transformers import pipeline from validators import ValidationFailure from Summarizer import Summarizer def main() -> None: nltk.download('punkt') st.markdown('# Terms & Conditions Summarizer :pencil:') st.markdown('Do you also always take the time out of your day to thoroughly read every word of the Terms & Conditions before signing up to an app like the responsible citizen that you are? :thinking_face:
' 'No?
' "Well don't worry, neither do we! That's why we created a Terms & Conditions Summarization algorithm!", unsafe_allow_html=True) st.markdown('Just copy-paste that pesky Terms & Conditions text or provide a URL to the text and let our fancy NLP algorithm do the rest!
' 'You will see both an extractive summary (the most important sentences will be highlighted) and an abstractive summary (an actual summary)
' 'The abstractive summary will give you an idea of what the key message of the document likely is :bulb:', unsafe_allow_html=True) st.markdown('Want to find out more? :brain:
' 'For details about the extractive part :point_right: https://en.wikipedia.org/wiki/Latent_semantic_analysis
' 'For details about the abstractive part :point_right: https://huggingface.co/ml6team/distilbart-tos-summarizer-tosdr', unsafe_allow_html=True) @st.cache(allow_output_mutation=True, suppress_st_warning=True, show_spinner=False) def create_pipeline(): with st.spinner('Please wait for the model to load...'): terms_and_conditions_pipeline = pipeline( task='summarization', model='ml6team/distilbart-tos-summarizer-tosdr', tokenizer='ml6team/distilbart-tos-summarizer-tosdr' ) return terms_and_conditions_pipeline def display_abstractive_summary(summary_sentences: list) -> None: st.subheader("Abstractive Summary") st.markdown('#####') for sentence in summary_sentences: st.markdown(f"- {sentence}", unsafe_allow_html=True) def display_extractive_summary(terms_and_conditions_text: str, summary_sentences: list) -> None: st.subheader("Extractive Summary") st.markdown('#####') replaced_text = html.escape(terms_and_conditions_text) for sentence in summary_sentences: sentence = html.escape(sentence) replaced_text = replaced_text.replace(sentence, f"{sentence}") replaced_text = replaced_text.replace('\n', '
') with st.container(): st.markdown(replaced_text, unsafe_allow_html=True) def is_valid_url(url: str) -> bool: result = validators.url(url) if isinstance(result, ValidationFailure): return False return True def list_all_filenames() -> list: filenames = [] for file in os.listdir('./sample-terms-and-conditions/'): if file.endswith('.txt'): filenames.append(file.replace('.txt', '')) return filenames def fetch_file_contents(filename: str) -> AnyStr: with open(f'./sample-terms-and-conditions/{filename.lower()}.txt', 'r') as f: data = f.read() return data summarizer: Summarizer = Summarizer(create_pipeline()) if 'tc_text' not in st.session_state: st.session_state['tc_text'] = '' if 'sentences_length' not in st.session_state: st.session_state['sentences_length'] = Summarizer.DEFAULT_EXTRACTED_ARTICLE_SENTENCES_LENGTH if 'sample_choice' not in st.session_state: st.session_state['sample_choice'] = '' st.write('', unsafe_allow_html=True) st.header("Input") sentences_length = st.number_input( label='Number of sentences to be extracted:', min_value=5, max_value=15, value=st.session_state.sentences_length ) sample_choice = st.selectbox( 'Choose a sample terms & conditions:', list_all_filenames()) st.session_state.tc_text = fetch_file_contents(sample_choice) tc_text_input = st.text_area( value=st.session_state.tc_text, label='Terms & conditions content or specify an URL:', height=240 ) summarize_button = st.button(label='Summarize') @st.cache(suppress_st_warning=True, show_spinner=False, allow_output_mutation=True, hash_funcs={"torch.nn.parameter.Parameter": lambda _: None, "tokenizers.Tokenizer": lambda _: None, "tokenizers.AddedToken": lambda _: None, }) def abstractive_summary_from_cache(summary_sentences: tuple) -> tuple: with st.spinner('Summarizing the text is in progress...'): return tuple(summarizer.abstractive_summary(list(summary_sentences))) if summarize_button: if is_valid_url(tc_text_input): extract_summary_sentences = summarizer.extractive_summary_from_url(tc_text_input, sentences_length) else: extract_summary_sentences = summarizer.extractive_summary_from_text(tc_text_input, sentences_length) extract_summary_sentences_tuple = tuple(extract_summary_sentences) abstract_summary_tuple = abstractive_summary_from_cache(extract_summary_sentences_tuple) abstract_summary_list = list(abstract_summary_tuple) display_abstractive_summary(abstract_summary_list) display_extractive_summary(tc_text_input, extract_summary_sentences) if __name__ == "__main__": main()