import gradio as gr import tensorflow as tf from huggingface_hub import from_pretrained_keras from tensorflow.keras import mixed_precision # Load your trained models model = from_pretrained_keras("ml-debi/EfficientNetV2S-StanfordDogsA") # Add information about the models model_info = """ ### Model Information """ #examples = [["./examples/nala.jpg"], ["./examples/molly.jpg"]] def preprocess(image): print("before resize", image.shape) image = tf.image.resize(image, [224, 224]) image = tf.expand_dims(image, axis=0) print("After expanddims", image.shape) return image def predict(image): if mixed_precision.global_policy() == "mixed_float16": mixed_precision.set_global_policy(policy="float32") image = preprocess(image) print(mixed_precision.global_policy()) prediction = model.predict(image)[0] print("model prediction", prediction) confidences = {model.config['id2label'][str(i)]: float(prediction[i]) for i in range(101)} return confidences iface = gr.Interface( fn=predict, inputs=[gr.Image()], outputs=[gr.Label(num_top_classes=5)], title="Dog Vision Mini Project", description=f"{model_info}\n", #examples=examples ) iface.launch()