import streamlit as st from transformers import pipeline from PIL import Image import easyocr # ghjklkjhgfghj pipe = pipeline("text2text-generation", model="google/flan-t5-base") st.title("Text Classification Model") uploaded_file = st.file_uploader("Upload an image:") if uploaded_file is not None: image = Image.open(uploaded_file) ocr_reader = easyocr.Reader(['en']) ocr_results = ocr_reader.readtext(image) extracted_text = " ".join([res[1] for res in ocr_results]) st.markdown("**Extracted text:**") st.markdown(extracted_text) explanation = pipe(extracted_text, max_length=100, do_sample=True)[0]["generated_text"] st.markdown("**Explanation:**") st.markdown(explanation) else: st.markdown("Please upload an image to extract text and get an explanation.")