# Copyright Niantic 2019. Patent Pending. All rights reserved. # # This software is licensed under the terms of the Monodepth2 licence # which allows for non-commercial use only, the full terms of which are made # available in the LICENSE file. from __future__ import absolute_import, division, print_function import torch import torch.nn as nn class PoseCNN(nn.Module): def __init__(self, num_input_frames): super(PoseCNN, self).__init__() self.num_input_frames = num_input_frames self.convs = {} self.convs[0] = nn.Conv2d(3 * num_input_frames, 16, 7, 2, 3) self.convs[1] = nn.Conv2d(16, 32, 5, 2, 2) self.convs[2] = nn.Conv2d(32, 64, 3, 2, 1) self.convs[3] = nn.Conv2d(64, 128, 3, 2, 1) self.convs[4] = nn.Conv2d(128, 256, 3, 2, 1) self.convs[5] = nn.Conv2d(256, 256, 3, 2, 1) self.convs[6] = nn.Conv2d(256, 256, 3, 2, 1) self.pose_conv = nn.Conv2d(256, 6 * (num_input_frames - 1), 1) self.num_convs = len(self.convs) self.relu = nn.ReLU(True) self.net = nn.ModuleList(list(self.convs.values())) def forward(self, out): for i in range(self.num_convs): out = self.convs[i](out) out = self.relu(out) out = self.pose_conv(out) out = out.mean(3).mean(2) # out = 0.01 * out.view(-1, self.num_input_frames - 1, 1, 6) # original out = out.view(-1, self.num_input_frames - 1, 1, 6) axisangle = out[..., :3] translation = out[..., 3:] return axisangle, translation