from sklearn.neighbors import KNeighborsClassifier import cv2 import pickle import numpy as np import os import csv import time from datetime import datetime from flask import Flask, render_template, request from win32com.client import Dispatch def speak(str1): speak=Dispatch(("SAPI.SpVoice")) speak.Speak(str1) facedetect=cv2.CascadeClassifier('data/haarcascade_frontalface_default.xml') with open('data/names.pkl', 'rb') as w: LABELS=pickle.load(w) with open('data/faces_data.pkl', 'rb') as f: FACES=pickle.load(f) # print('Shape of Faces matrix --> ', FACES.shape) knn=KNeighborsClassifier(n_neighbors=5) knn.fit(FACES, LABELS) COL_NAMES = ['NAME', 'TIME'] # def take_attendence(): # ret,frame=video.read() # gray=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # faces=facedetect.detectMultiScale(gray, 1.3 ,5) # for (x,y,w,h) in faces: # crop_img=frame[y:y+h, x:x+w, :] # resized_img=cv2.resize(crop_img, (50,50)).flatten().reshape(1,-1) # output=knn.predict(resized_img) # ts=time.time() # date=datetime.fromtimestamp(ts).strftime("%d-%m-%Y") # timestamp=datetime.fromtimestamp(ts).strftime("%H:%M-%S") # exist=os.path.isfile("Attendance/Attendance_" + date + ".csv") # cv2.rectangle(frame, (x,y), (x+w, y+h), (0,0,255), 1) # cv2.rectangle(frame,(x,y),(x+w,y+h),(50,50,255),2) # cv2.rectangle(frame,(x,y-40),(x+w,y),(50,50,255),-1) # cv2.putText(frame, str(output[0]), (x,y-15), cv2.FONT_HERSHEY_COMPLEX, 1, (255,255,255), 1) # cv2.rectangle(frame, (x,y), (x+w, y+h), (50,50,255), 1) # attendance=[str(output[0]), str(timestamp)] # speak("Attendance Taken..") # if exist: # with open("Attendance/Attendance_" + date + ".csv", "+a") as csvfile: # writer=csv.writer(csvfile) # writer.writerow(attendance) # csvfile.close() # else: # with open("Attendance/Attendance_" + date + ".csv", "+a") as csvfile: # writer=csv.writer(csvfile) # writer.writerow(COL_NAMES) # writer.writerow(attendance) # csvfile.close() # # if k==ord('q'): # # break # # video.release() # # cv2.destroyAllWindows() app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/atten') def atten(): return render_template('atten.html') @app.route('/take_attendance', methods=['POST']) def take_attendance(): video=cv2.VideoCapture(0) ret, frame = video.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = facedetect.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: crop_img=frame[y:y+h, x:x+w, :] resized_img=cv2.resize(crop_img, (50,50)).flatten().reshape(1,-1) output=knn.predict(resized_img) ts=time.time() date=datetime.fromtimestamp(ts).strftime("%d-%m-%Y") timestamp=datetime.fromtimestamp(ts).strftime("%H:%M-%S") exist=os.path.isfile("Attendance/Attendance_" + date + ".csv") cv2.rectangle(frame, (x,y), (x+w, y+h), (0,0,255), 1) cv2.rectangle(frame,(x,y),(x+w,y+h),(50,50,255),2) cv2.rectangle(frame,(x,y-40),(x+w,y),(50,50,255),-1) cv2.putText(frame, str(output[0]), (x,y-15), cv2.FONT_HERSHEY_COMPLEX, 1, (255,255,255), 1) cv2.rectangle(frame, (x,y), (x+w, y+h), (50,50,255), 1) attendance=[str(output[0]), str(timestamp)] speak("Attendance Taken..") if exist: with open("Attendance/Attendance_" + date + ".csv", "+a") as csvfile: writer=csv.writer(csvfile) writer.writerow(attendance) csvfile.close() else: with open("Attendance/Attendance_" + date + ".csv", "+a") as csvfile: writer=csv.writer(csvfile) writer.writerow(COL_NAMES) writer.writerow(attendance) csvfile.close() video.release() return "Attendance taken successfully!" if __name__ == '__main__': app.run(debug=True)