from keras.models import load_model import numpy as np from keras.preprocessing import image import gradio as gr from PIL import Image def a(img): img = img.reshape( 64,64,3) model=load_model('./cats&dog.h5') test_image=np.expand_dims(img, axis=0) result=model.predict(test_image) if result[0][0]==1: prediction='Dog' print(prediction) return prediction else: prediction='Cat' print(prediction) return prediction input = gr.inputs.Image(type='pil', label="Original Image", source="upload", optional=True) inputs = [input] outputs = gr.outputs.Image(type="pil", label="Output Image") title = "Dog and Cat Object detection" image = gr.inputs.Image(shape=(64,64)) demo=gr.Interface(fn=a, inputs=image,examples=["photo/a01.jpg", "photo/a02.jpg","photo/a03.jpg","photo/a04.jpg"],outputs="text").launch(debug='True') if __name__ == "__main__": demo.launch()