import gradio as gr import re from transformers import DonutProcessor, VisionEncoderDecoderModel import torch from PIL import Image def process_filename(filename, question): print(f"Image file: {filename}") print(f"Question: {question}") image = Image.open(filename).convert("RGB") return process_image(image) def process_image(set_use_cache, set_return_dict_in_generate, set_early_stopping, set_output_scores, image, question): repo_id = "naver-clova-ix/donut-base-finetuned-docvqa" print(f"Model repo: {repo_id}") processor = DonutProcessor.from_pretrained(repo_id) model = VisionEncoderDecoderModel.from_pretrained(repo_id) device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Device used: {device}") model.to(device) # prepare decoder inputs prompt = f"{question}" decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids pixel_values = processor(image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=set_use_cache=="True", bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=set_return_dict_in_generate=="True", early_stopping=set_early_stopping=="True", output_scores=set_output_scores=="True" ) sequence_data = processor.batch_decode(outputs.sequences) print(f"Sequence data: {sequence_data}") sequence = sequence_data[0] print(f"Sequence: {sequence}") sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token print(processor.token2json(sequence)) return processor.token2json(sequence)['answer'] description = "DocVQA (document visual question answering)" demo = gr.Interface( fn=process_image, inputs=[ gr.Radio(["True", "False"], value="True", label="Use cache", info="Define model.generate() use_cache value"), gr.Radio(["True", "False"], value="True", label="Dict in generate", info="Define model.generate() return_dict_in_generate value"), gr.Radio(["True", "False"], value="True", label="Early stopping", info="Define model.generate() early_stopping value"), gr.Radio(["True", "False"], value="True", label="Output scores", info="Define model.generate() output_scores value"), "image", gr.Textbox(label = "Question" ) ], outputs=gr.Textbox(label = "Response" ), title="Extract data from image", description=description, cache_examples=True) demo.launch()