import streamlit as st import torch from langchain_text_splitters import Language, RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # gpt_model = 'gpt-4-1106-preview' # embedding_model = 'text-embedding-3-small' default_model_id = "bigcode/starcoder2-3b" #default_model_id = "tiiuae/falcon-7b-instruct" def init(): if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = [] def init_llm_pipeline(model_id): if "llm" not in st.session_state: model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.add_eos_token = True tokenizer.pad_token_id = 0 tokenizer.padding_side = "left" text_generation_pipeline = pipeline( model=model, tokenizer=tokenizer, task="text-generation", max_new_tokens=1024 ) st.session_state.llm = text_generation_pipeline def get_retriever(files): documents = [doc.getvalue().decode("utf-8") for doc in files] python_splitter = RecursiveCharacterTextSplitter.from_language( language=Language.PYTHON, chunk_size=2000, chunk_overlap=200 ) texts = python_splitter.create_documents(documents) embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") db = FAISS.from_documents(texts, embeddings) retriever = db.as_retriever( search_type="mmr", # Also test "similarity" search_kwargs={"k": 8}, ) return retriever def get_conversation(retriever): #memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=st.session_state.llm, retriever=retriever ) return conversation_chain def getprompt(user_input): prompt = f"You are a helpful assistant. Please answer the user question. USER: {user_input} ASSISTANT:" return prompt def handle_user_input(question): st.session_state.chat_history += {"role":"user","content":question} response = st.session_state.llm(getprompt(question)) st.session_state.chat_history += {"role":"assistant","content":response} for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: with st.chat_message("user"): st.write(message.content) else: with st.chat_message("assistant"): st.write(message.content) def main(): init() st.set_page_config(page_title="Coding-Assistent", page_icon=":books:") st.header(":books: Coding-Assistent ") user_input = st.chat_input("Stellen Sie Ihre Frage hier") if user_input: with st.spinner("Führe Anfrage aus ..."): handle_user_input(user_input) with st.sidebar: st.subheader("Model selector") model_id = st.text_input("Modelname on HuggingFace", default_model_id) st.subheader("Code Upload") upload_docs=st.file_uploader("Dokumente hier hochladen", accept_multiple_files=True) if st.button("Hochladen"): with st.spinner("Analysiere Dokumente ..."): init_llm_pipeline(model_id) retriever = get_retriever(upload_docs) st.session_state.conversation = get_conversation(retriever) if __name__ == "__main__": main()