from typing import List import openai import gradio as gr from os import getenv from typing import Any, Dict, Generator, List from huggingface_hub import InferenceClient from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") temperature = 0.9 top_p = 0.6 repetition_penalty = 1.2 OPENAI_KEY = getenv("OPENAI_API_KEY") HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") hf_client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1", token=HF_TOKEN) def embed_docs(prompt: str, documents: List[str]): context_template = """ I am giving you context from several documents. You goal is process the documents and use them in your answer. Here are the documents: """ for i, doc in enumerate(documents): context_template += "\n" + f"Document {i}:\n" + doc context_template += "\n" + "Here is the question:\n" + prompt return context_template def format_prompt(message: str, api_kind: str): """ Formats the given message using a chat template. Args: message (str): The user message to be formatted. Returns: str: Formatted message after applying the chat template. """ # Create a list of message dictionaries with role and content messages: List[Dict[str, Any]] = [{"role": "user", "content": message}] if api_kind == "openai": return messages elif api_kind == "hf": return tokenizer.apply_chat_template(messages, tokenize=False) elif api_kind: raise ValueError("API is not supported") def generate_hf( prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 256, top_p: float = 0.95, repetition_penalty: float = 1.0, ) -> Generator[str, None, str]: """ Generate a sequence of tokens based on a given prompt and history using Mistral client. Args: prompt (str): The initial prompt for the text generation. history (str): Context or history for the text generation. temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. Returns: Generator[str, None, str]: A generator yielding chunks of generated text. Returns a final string if an error occurs. """ temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low top_p = float(top_p) generate_kwargs = { "temperature": temperature, "max_new_tokens": max_new_tokens, "top_p": top_p, "repetition_penalty": repetition_penalty, "do_sample": True, "seed": 42, } formatted_prompt = format_prompt(prompt, "hf") print("FORMATTED PROMPT STARTED") print("----------------") print(formatted_prompt) print("FORMATTED PROMPT ENDED") print("----------------") try: stream = hf_client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False ) output = "" for response in stream: output += response.token.text yield output except Exception as e: if "Too Many Requests" in str(e): print("ERROR: Too many requests on Mistral client") gr.Warning("Unfortunately Mistral is unable to process") return "Unfortunately, I am not able to process your request now." elif "Authorization header is invalid" in str(e): print("Authetification error:", str(e)) gr.Warning("Authentication error: HF token was either not provided or incorrect") return "Authentication error" else: print("Unhandled Exception:", str(e)) gr.Warning("Unfortunately Mistral is unable to process") return "I do not know what happened, but I couldn't understand you." def generate_openai( prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 256, top_p: float = 0.95, repetition_penalty: float = 1.0, ) -> Generator[str, None, str]: """ Generate a sequence of tokens based on a given prompt and history using Mistral client. Args: prompt (str): The initial prompt for the text generation. history (str): Context or history for the text generation. temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. Returns: Generator[str, None, str]: A generator yielding chunks of generated text. Returns a final string if an error occurs. """ temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low top_p = float(top_p) generate_kwargs = { "temperature": temperature, "max_tokens": max_new_tokens, "top_p": top_p, "frequency_penalty": max(-2.0, min(repetition_penalty, 2.0)), } formatted_prompt = format_prompt(prompt, "openai") try: stream = openai.ChatCompletion.create( model="gpt-3.5-turbo-0301", messages=formatted_prompt, **generate_kwargs, stream=True ) output = "" for chunk in stream: output += chunk.choices[0].delta.get("content", "") yield output except Exception as e: if "Too Many Requests" in str(e): print("ERROR: Too many requests on OpenAI client") gr.Warning("Unfortunately OpenAI is unable to process") return "Unfortunately, I am not able to process your request now." elif "You didn't provide an API key" in str(e): print("Authetification error:", str(e)) gr.Warning("Authentication error: OpenAI key was either not provided or incorrect") return "Authentication error" else: print("Unhandled Exception:", str(e)) gr.Warning("Unfortunately OpenAI is unable to process") return "I do not know what happened, but I couldn't understand you."