from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer from PIL import Image import requests import torch from threading import Thread import gradio as gr from gradio import FileData import time import spaces ckpt = "misdelivery/Llama-3.2-11B-Vision-Instruct-ja-test1" model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda") processor = AutoProcessor.from_pretrained(ckpt) @spaces.GPU def bot_streaming(message, history, max_new_tokens=250): txt = message["text"] ext_buffer = f"{txt}" messages= [] images = [] for i, msg in enumerate(history): if isinstance(msg[0], tuple): messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]}) images.append(Image.open(msg[0][0]).convert("RGB")) elif isinstance(history[i-1], tuple) and isinstance(msg[0], str): # messages are already handled pass elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]}) # add current message if len(message["files"]) == 1: if isinstance(message["files"][0], str): # examples image = Image.open(message["files"][0]).convert("RGB") else: # regular input image = Image.open(message["files"][0]["path"]).convert("RGB") images.append(image) messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]}) else: messages.append({"role": "user", "content": [{"type": "text", "text": txt}]}) texts = processor.apply_chat_template(messages, add_generation_prompt=True) if images == []: inputs = processor(text=texts, return_tensors="pt").to("cuda") else: inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer time.sleep(0.01) yield buffer demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[ [{"text": "この作品はどの時代に属していますか?その時代について詳しく教えてください。", "files":["./examples/rococo.jpg"]}, 200], [{"text": "この図によると、干ばつはどこで発生しますか?", "files":["./examples/weather_events.png"]}, 250], [{"text": "この鎖から白い猫を外すとどうなりますか?", "files":["./examples/ai2d_test.jpg"]}, 250], [{"text": "請求日から期日までの期間は?短く簡潔に答えてください。", "files":["./examples/invoice.png"]}, 250], [{"text": "このモニュメントはどこにありますか?周辺地域のおすすめを教えていただけますか", "files":["./examples/wat_arun.jpg"]}, 250], ], textbox=gr.MultimodalTextbox(), additional_inputs = [gr.Slider( minimum=10, maximum=500, value=250, step=10, label="Maximum number of new tokens to generate", ) ], cache_examples=False, description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ", stop_btn="Stop Generation", fill_height=True, multimodal=True) demo.launch(debug=True)