import functools import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.applications import efficientnet #import efficientnet from tensorflow.keras.layers import TextVectorization import matplotlib.pyplot as plt import cv2 from models import EMBED_DIM, FF_DIM, SEQ_LENGTH, ImageCaptioningModel, TransformerDecoderBlock, TransformerEncoderBlock, get_cnn_model, image_augmentation, vectorization, valid_data, decode_and_resize def display_UI(): import streamlit as st from streamlit_option_menu import option_menu import streamlit.components.v1 as html import pandas as pd import numpy as np from pathlib import Path # from PIL import Image st.markdown(""" """, unsafe_allow_html=True) #Add a logo (optional) in the sidebar # logo = Image.open(r'C:\Users\13525\Desktop\Insights_Bees_logo.png') # with st.sidebar: # choose = option_menu("Forensic Examiner", ["Inspect Media","Comparative Analysis","About", "Contact"], # icons=['camera fill', 'kanban', 'book','person lines fill'], # menu_icon="app-indicator", default_index=0, # styles={ # "container": {"padding": "0 5 5 5 !important", "background-color": "#fafafa"}, # "icon": {"color": "orange", "font-size": "25px"}, # "nav-link": {"font-size": "16px", "text-align": "left", "margin":"0px", "--hover-color": "#eee"}, # "nav-link-selected": {"background-color": "#02ab21"}, # } # ) #Add the cover image for the cover page. Used a little trick to center the image st.markdown(""" """, unsafe_allow_html=True) col1, col2 = st.columns( [0.8, 0.2]) with col1: # To display the header text using css style st.markdown('
Generate Caption of image
', unsafe_allow_html=True) with col2: # To display brand logo st.image('./logo.png', width=50 ) # model_name = st.selectbox("Select the model...", list (all_models.keys ())) uploaded_file = st.file_uploader("Choose an Image File", type=[".jpg", ".jpeg", ".png", ".PNG"], accept_multiple_files=False) opencv_image= None if uploaded_file is not None: with st.spinner('Wait for it...'): # read image file and store for prediction # img_file=uploaded_file.read() file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) opencv_image = cv2.imdecode(file_bytes, 1) # Now do something with the image! For example, let's display it: st.image(opencv_image, channels="BGR") # bytes_data = uploaded_file.getvalue() # audio_bytes = uploaded_file.read() # save_folder = './data' # save_path = Path(save_folder, uploaded_file.name) # with open(save_path, mode='wb') as w: # w.write(uploaded_file.getvalue()) st.image(opencv_image, width=400 ) with st.spinner('Loading the model..'): cnn_model = get_cnn_model() encoder = TransformerEncoderBlock(embed_dim=EMBED_DIM, dense_dim=FF_DIM, num_heads=1) decoder = TransformerDecoderBlock(embed_dim=EMBED_DIM, ff_dim=FF_DIM, num_heads=2) new_model = ImageCaptioningModel( cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=image_augmentation, ) def generate_caption(): # Select a random image from the validation dataset sample_img = opencv_image #np.random.choice(valid_images) # Read the image from the disk cv2.imwrite('./uploaded_image.jpg', sample_img) sample_img = decode_and_resize('./uploaded_image.jpg') img = sample_img.numpy().clip(0, 255).astype(np.uint8) #plt.imshow(img) #plt.show() # Pass the image to the CNN img = tf.expand_dims(sample_img, 0) img = new_model.cnn_model(img) # Pass the image features to the Transformer encoder encoded_img = new_model.encoder(img, training=False) # Generate the caption using the Transformer decoder decoded_caption = "Comparison of Models
', unsafe_allow_html=True) # data_frame = get_data() # tab1, tab2 = st.tabs(["EER", "min-TDCF"]) # with tab1: # data_frame["EER ASVS 2019"] = data_frame["EER ASVS 2019"].astype('float64') # data_frame["EER ASVS 2021"] = data_frame["EER ASVS 2021"].astype('float64') # data_frame["Cross-dataset 19-21"] = data_frame["Cross-dataset 19-21"].astype('float64') # data = data_frame[["Model Name","EER ASVS 2019","EER ASVS 2021","Cross-dataset 19-21"]].reset_index(drop=True).melt('Model Name') # chart=alt.Chart(data).mark_line().encode( # x='Model Name', # y='value', # color='variable' # ) # st.altair_chart(chart, theme=None, use_container_width=True) # with tab2: # data_frame["min-TDCF ASVS 2019"] = data_frame["EER ASVS 2019"].astype('float64') # data_frame["min-TDCF ASVS 2021"] = data_frame["EER ASVS 2021"].astype('float64') # data_frame["min-TDCF Cross-dataset"] = data_frame["Cross-dataset 19-21"].astype('float64') # data = data_frame[["Model Name","min-TDCF ASVS 2019","min-TDCF ASVS 2021","min-TDCF Cross-dataset"]].reset_index(drop=True).melt('Model Name') # chart=alt.Chart(data).mark_line().encode( # x='Model Name', # y='value', # color='variable' # ) # st.altair_chart(chart, theme=None, use_container_width=True) # # Data table # st.markdown(""" """, unsafe_allow_html=True) # st.dataframe(data_frame, use_container_width=True) # if choose == "About": # st.markdown(""" """, unsafe_allow_html=True) # st.markdown('About
', unsafe_allow_html=True) # if choose == "Contact": # st.markdown(""" """, unsafe_allow_html=True) # st.markdown('Contact Us
', unsafe_allow_html=True) # with st.form(key='columns_in_form2',clear_on_submit=True): #set clear_on_submit=True so that the form will be reset/cleared once it's submitted # #st.write('Please help us improve!') # Name=st.text_input(label='Please Enter Your Name') #Collect user feedback # Email=st.text_input(label='Please Enter Your Email') #Collect user feedback # Message=st.text_input(label='Please Enter Your Message') #Collect user feedback # submitted = st.form_submit_button('Submit') # if submitted: # st.write('Thanks for your contacting us. We will respond to your questions or inquiries as soon as possible!') display_UI()