import pandas as pd import numpy as np import re import os import sys import random import transformers from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import RobertaTokenizer, RobertaForSequenceClassification import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler from transformers import T5Tokenizer, T5ForConditionalGeneration import gradio as gr def greet(co): code_text = [] while True: code = co if not code: break code_text.append(code) code_text = ' '.join(code_text) code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text) code_text = re.sub('\/\/.*', '', code_text) code_text = re.sub('(\\\\n)+', '\\n', code_text) # 1. CFA-CodeBERTa-small.pt -> CodeBERTa-small-v1 finetunig model path = os.getcwd() + '/models/CFA-CodeBERTa-small.pt' tokenizer = AutoTokenizer.from_pretrained("huggingface/CodeBERTa-small-v1") input_ids = tokenizer.encode( code_text, max_length=512, truncation=True, padding='max_length') input_ids = torch.tensor([input_ids]) model = RobertaForSequenceClassification.from_pretrained( path, num_labels=2) model.to('cpu') pred_1 = model(input_ids)[0].detach().cpu().numpy()[0] # model(input_ids)[0].argmax().detach().cpu().numpy().item() # 2. CFA-codebert-c.pt -> codebert-c finetuning model path = os.getcwd() + '/models/CFA-codebert-c.pt' tokenizer = AutoTokenizer.from_pretrained(path) input_ids = tokenizer(code_text, padding=True, max_length=512, truncation=True, return_token_type_ids=True)['input_ids'] input_ids = torch.tensor([input_ids]) model = AutoModelForSequenceClassification.from_pretrained( path, num_labels=2) model.to('cpu') pred_2 = model(input_ids)[0].detach().cpu().numpy()[0] # 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model path = os.getcwd() + '/models/CFA-codebert-c-v2.pt' tokenizer = RobertaTokenizer.from_pretrained(path) input_ids = tokenizer(code_text, padding=True, max_length=512, truncation=True, return_token_type_ids=True)['input_ids'] input_ids = torch.tensor([input_ids]) model = RobertaForSequenceClassification.from_pretrained( path, num_labels=2) model.to('cpu') pred_3 = model(input_ids)[0].detach().cpu().numpy() # 4. codeT5 finetuning model path = os.getcwd() + '/models/CFA-codeT5' model_params = { # model_type: t5-base/t5-large "MODEL": path, "TRAIN_BATCH_SIZE": 8, # training batch size "VALID_BATCH_SIZE": 8, # validation batch size "VAL_EPOCHS": 1, # number of validation epochs "MAX_SOURCE_TEXT_LENGTH": 512, # max length of source text "MAX_TARGET_TEXT_LENGTH": 3, # max length of target text "SEED": 2022, # set seed for reproducibility } data = pd.DataFrame({'code': [code_text]}) pred_4 = T5Trainer( dataframe=data, source_text="code", model_params=model_params ) pred_4 = int(pred_4[0]) # ensemble tot_result = (pred_1 * 0.8 + pred_2 * 0.1 + pred_3 * 0.1 + pred_4 * 0.1).argmax() return tot_result # codeT5 class YourDataSetClass(Dataset): def __init__( self, dataframe, tokenizer, source_len, source_text): self.tokenizer = tokenizer self.data = dataframe self.source_len = source_len # self.summ_len = target_len # self.target_text = self.data[target_text] self.source_text = self.data[source_text] def __len__(self): return len(self.source_text) def __getitem__(self, index): source_text = str(self.source_text[index]) source_text = " ".join(source_text.split()) source = self.tokenizer.batch_encode_plus( [source_text], max_length=self.source_len, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors="pt", ) source_ids = source["input_ids"].squeeze() source_mask = source["attention_mask"].squeeze() return { "source_ids": source_ids.to(dtype=torch.long), "source_mask": source_mask.to(dtype=torch.long), } def validate(epoch, tokenizer, model, device, loader): model.eval() predictions = [] with torch.no_grad(): for _, data in enumerate(loader, 0): ids = data['source_ids'].to(device, dtype=torch.long) mask = data['source_mask'].to(device, dtype=torch.long) generated_ids = model.generate( input_ids=ids, attention_mask=mask, max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True ) preds = [tokenizer.decode( g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] if ((preds != '0') | (preds != '1')): preds = '0' predictions.extend(preds) return predictions def T5Trainer(dataframe, source_text, model_params, step="test",): torch.manual_seed(model_params["SEED"]) # pytorch random seed np.random.seed(model_params["SEED"]) # numpy random seed torch.backends.cudnn.deterministic = True tokenizer = T5Tokenizer.from_pretrained(model_params["MODEL"]) model = T5ForConditionalGeneration.from_pretrained(model_params["MODEL"]) model = model.to('cpu') dataframe = dataframe[[source_text]] val_dataset = dataframe val_set = YourDataSetClass( val_dataset, tokenizer, model_params["MAX_SOURCE_TEXT_LENGTH"], source_text) val_params = { 'batch_size': model_params["VALID_BATCH_SIZE"], 'shuffle': False, 'num_workers': 0 } val_loader = DataLoader(val_set, **val_params) for epoch in range(model_params["VAL_EPOCHS"]): predictions = validate(epoch, tokenizer, model, 'cpu', val_loader) return predictions ################################################################################# '''demo = gr.Interface( fn = greet, inputs = "text", outputs= "number") demo.launch(share=True) ''' with gr.Blocks() as demo1: gr.Markdown( """

False-Alarm-Detector

""") gr.Markdown( """ 정적 분석기로 오류라고 보고된 코드를 입력하면,\ 오류가 True-positive 인지 False-positive 인지 분류 해 주는 프로그램이다. """) with gr.Accordion(label='모델에 대한 설명 ( 여기를 클릭 하시오. )',open=False): gr.Markdown( """ 총 3개의 모델을 사용함 쌸라쌸라 """ ) with gr.Row(): with gr.Columns(): inputs_1 = gr.Textbox(placeholder="코드를 입력하시오.", label='Text') with gr.Row(): btn = gr.Button("제출하기") with gr.Column(): outputs_1 = gr.Number(label = 'Result') btn.click(fn = greet, inputs = inputs_1, outputs= outputs_1) if __name__ == "__main__": demo1.launch()