Spaces:
Sleeping
Sleeping
File size: 7,486 Bytes
3945f15 0964dff 3945f15 fe8c282 0964dff 0c1d006 3945f15 0964dff 3945f15 0964dff 3945f15 e535275 3945f15 0964dff 3945f15 e535275 3945f15 0964dff 3945f15 0964dff 4c479ed 3945f15 b0aa4c5 3945f15 b0aa4c5 0964dff b0aa4c5 0964dff b0aa4c5 0964dff b0aa4c5 4c479ed b0aa4c5 0964dff b0aa4c5 17b68af 0964dff b0aa4c5 4c479ed b0aa4c5 0964dff b0aa4c5 e0f6cd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import pandas as pd
import numpy as np
import re
import os
import sys
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import T5Tokenizer, T5ForConditionalGeneration
import gradio as gr
def is_false_alarm(code_text):
code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text)
code_text = re.sub('\/\/.*', '', code_text)
code_text = re.sub('(\\\\n)+', '\\n', code_text)
# 1. CFA-CodeBERTa-small.pt -> CodeBERTa-small-v1 finetunig model
path = os.getcwd() + '\models\CFA-CodeBERTa-small.pt'
tokenizer = AutoTokenizer.from_pretrained("huggingface/CodeBERTa-small-v1")
input_ids = tokenizer.encode(
code_text, max_length=512, truncation=True, padding='max_length')
input_ids = torch.tensor([input_ids])
model = RobertaForSequenceClassification.from_pretrained(
path, num_labels=2)
model.to('cpu')
pred_1 = model(input_ids)[0].detach().cpu().numpy()[0]
# model(input_ids)[0].argmax().detach().cpu().numpy().item()
# 2. CFA-codebert-c.pt -> codebert-c finetuning model
path = os.getcwd() + '\models\CFA-codebert-c.pt'
tokenizer = AutoTokenizer.from_pretrained(path)
input_ids = tokenizer(code_text, padding=True, max_length=512,
truncation=True, return_token_type_ids=True)['input_ids']
input_ids = torch.tensor([input_ids])
model = AutoModelForSequenceClassification.from_pretrained(
path, num_labels=2)
model.to('cpu')
pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]
# 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
path = os.getcwd() + '\models\CFA-codebert-c-v2.pt'
tokenizer = RobertaTokenizer.from_pretrained(path)
input_ids = tokenizer(code_text, padding=True, max_length=512,
truncation=True, return_token_type_ids=True)['input_ids']
input_ids = torch.tensor([input_ids])
model = RobertaForSequenceClassification.from_pretrained(
path, num_labels=2)
model.to('cpu')
pred_3 = model(input_ids)[0].detach().cpu().numpy()
# 4. codeT5 finetuning model
path = os.getcwd() + '\models\CFA-codeT5'
model_params = {
# model_type: t5-base/t5-large
"MODEL": path,
"TRAIN_BATCH_SIZE": 8, # training batch size
"VALID_BATCH_SIZE": 8, # validation batch size
"VAL_EPOCHS": 1, # number of validation epochs
"MAX_SOURCE_TEXT_LENGTH": 512, # max length of source text
"MAX_TARGET_TEXT_LENGTH": 3, # max length of target text
"SEED": 2022, # set seed for reproducibility
}
data = pd.DataFrame({'code': [code_text]})
pred_4 = T5Trainer(
dataframe=data,
source_text="code",
model_params=model_params
)
pred_4 = int(pred_4[0])
# ensemble
tot_result = (pred_1 * 0.1 + pred_2 * 0.1 +
pred_3 * 0.7 + pred_4 * 0.1).argmax()
if tot_result == 0:
return "false positive !!"
else:
return "true positive !!"
# codeT5
class YourDataSetClass(Dataset):
def __init__(
self, dataframe, tokenizer, source_len, source_text):
self.tokenizer = tokenizer
self.data = dataframe
self.source_len = source_len
# self.summ_len = target_len
# self.target_text = self.data[target_text]
self.source_text = self.data[source_text]
def __len__(self):
return len(self.source_text)
def __getitem__(self, index):
source_text = str(self.source_text[index])
source_text = " ".join(source_text.split())
source = self.tokenizer.batch_encode_plus(
[source_text],
max_length=self.source_len,
pad_to_max_length=True,
truncation=True,
padding="max_length",
return_tensors="pt",
)
source_ids = source["input_ids"].squeeze()
source_mask = source["attention_mask"].squeeze()
return {
"source_ids": source_ids.to(dtype=torch.long),
"source_mask": source_mask.to(dtype=torch.long),
}
def validate(epoch, tokenizer, model, device, loader):
model.eval()
predictions = []
with torch.no_grad():
for _, data in enumerate(loader, 0):
ids = data['source_ids'].to(device, dtype=torch.long)
mask = data['source_mask'].to(device, dtype=torch.long)
generated_ids = model.generate(
input_ids=ids,
attention_mask=mask,
max_length=150,
num_beams=2,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True
)
preds = [tokenizer.decode(
g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
if ((preds != '0') | (preds != '1')):
preds = '0'
predictions.extend(preds)
return predictions
def T5Trainer(dataframe, source_text, model_params, step="test",):
torch.manual_seed(model_params["SEED"]) # pytorch random seed
np.random.seed(model_params["SEED"]) # numpy random seed
torch.backends.cudnn.deterministic = True
tokenizer = T5Tokenizer.from_pretrained(model_params["MODEL"])
model = T5ForConditionalGeneration.from_pretrained(model_params["MODEL"])
model = model.to('cpu')
dataframe = dataframe[[source_text]]
val_dataset = dataframe
val_set = YourDataSetClass(
val_dataset, tokenizer, model_params["MAX_SOURCE_TEXT_LENGTH"], source_text)
val_params = {
'batch_size': model_params["VALID_BATCH_SIZE"],
'shuffle': False,
'num_workers': 0
}
val_loader = DataLoader(val_set, **val_params)
for epoch in range(model_params["VAL_EPOCHS"]):
predictions = validate(epoch, tokenizer, model, 'cpu', val_loader)
return predictions
#################################################################################
'''demo = gr.Interface(
fn = greet,
inputs = "text",
outputs= "number")
demo.launch(share=True)
'''
with gr.Blocks() as demo1:
gr.Markdown(
"""
<h1 align="center">
False-Alarm-Detector
</h1>
""")
gr.Markdown(
"""
์ ์ ๋ถ์๊ธฐ๋ฅผ ํตํด ์ค๋ฅ๋ผ๊ณ ๋ณด๊ณ ๋ C์ธ์ด ์ฝ๋์ ํจ์๋ฅผ ์
๋ ฅํ๋ฉด,
์ค๋ฅ๊ฐ True-positive ์ธ์ง False-positive ์ธ์ง ๋ถ๋ฅ ํด ์ฃผ๋ ํ๋ก๊ทธ๋จ์
๋๋ค.
""")
'''
with gr.Accordion(label='๋ชจ๋ธ์ ๋ํ ์ค๋ช
( ์ฌ๊ธฐ๋ฅผ ํด๋ฆญ ํ์์ค. )',open=False):
gr.Markdown(
"""
์ด 3๊ฐ์ ๋ชจ๋ธ์ ์ฌ์ฉํ์๋ค.
1. codeBERTa-small-v1
- codeBERTa-small-v1 ์ค๋ช
2. codeBERT - C
- codeBERT - C ์ค๋ช
3. codeT5
- codeT5 ์ค๋ช
"""
)
'''
with gr.Row():
with gr.Column():
inputs = gr.Textbox(
lines=10, placeholder="์ฝ๋๋ฅผ ์
๋ ฅํ์์ค.", label='Code')
with gr.Row():
btn = gr.Button("๊ฒฐ๊ณผ ์ถ๋ ฅ")
with gr.Column():
output = gr.Text(label='Result')
btn.click(fn=is_false_alarm, inputs=inputs, outputs=output)
if __name__ == "__main__":
demo1.launch()
|