""" This code is based on: [1] FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting, ICCV 2021 https://github.com/ruiliu-ai/FuseFormer [2] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 https://github.com/yitu-opensource/T2T-ViT [3] Focal Self-attention for Local-Global Interactions in Vision Transformers, NeurIPS 2021 https://github.com/microsoft/Focal-Transformer """ import math from functools import reduce import torch import torch.nn as nn import torch.nn.functional as F class SoftSplit(nn.Module): def __init__(self, channel, hidden, kernel_size, stride, padding, t2t_param): super(SoftSplit, self).__init__() self.kernel_size = kernel_size self.t2t = nn.Unfold(kernel_size=kernel_size, stride=stride, padding=padding) c_in = reduce((lambda x, y: x * y), kernel_size) * channel self.embedding = nn.Linear(c_in, hidden) self.t2t_param = t2t_param def forward(self, x, b, output_size): f_h = int((output_size[0] + 2 * self.t2t_param['padding'][0] - (self.t2t_param['kernel_size'][0] - 1) - 1) / self.t2t_param['stride'][0] + 1) f_w = int((output_size[1] + 2 * self.t2t_param['padding'][1] - (self.t2t_param['kernel_size'][1] - 1) - 1) / self.t2t_param['stride'][1] + 1) feat = self.t2t(x) feat = feat.permute(0, 2, 1) # feat shape [b*t, num_vec, ks*ks*c] feat = self.embedding(feat) # feat shape after embedding [b, t*num_vec, hidden] feat = feat.view(b, -1, f_h, f_w, feat.size(2)) return feat class SoftComp(nn.Module): def __init__(self, channel, hidden, kernel_size, stride, padding): super(SoftComp, self).__init__() self.relu = nn.LeakyReLU(0.2, inplace=True) c_out = reduce((lambda x, y: x * y), kernel_size) * channel self.embedding = nn.Linear(hidden, c_out) self.kernel_size = kernel_size self.stride = stride self.padding = padding self.bias_conv = nn.Conv2d(channel, channel, kernel_size=3, stride=1, padding=1) # TODO upsample conv # self.bias_conv = nn.Conv2d() # self.bias = nn.Parameter(torch.zeros((channel, h, w), dtype=torch.float32), requires_grad=True) def forward(self, x, t, output_size): b_, _, _, _, c_ = x.shape x = x.view(b_, -1, c_) feat = self.embedding(x) b, _, c = feat.size() feat = feat.view(b * t, -1, c).permute(0, 2, 1) feat = F.fold(feat, output_size=output_size, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding) feat = self.bias_conv(feat) return feat class FusionFeedForward(nn.Module): def __init__(self, d_model, n_vecs=None, t2t_params=None): super(FusionFeedForward, self).__init__() # We set d_ff as a default to 1960 hd = 1960 self.conv1 = nn.Sequential(nn.Linear(d_model, hd)) self.conv2 = nn.Sequential(nn.GELU(), nn.Linear(hd, d_model)) assert t2t_params is not None and n_vecs is not None self.t2t_params = t2t_params def forward(self, x, output_size): n_vecs = 1 for i, d in enumerate(self.t2t_params['kernel_size']): n_vecs *= int((output_size[i] + 2 * self.t2t_params['padding'][i] - (d - 1) - 1) / self.t2t_params['stride'][i] + 1) x = self.conv1(x) b, n, c = x.size() normalizer = x.new_ones(b, n, 49).view(-1, n_vecs, 49).permute(0, 2, 1) normalizer = F.fold(normalizer, output_size=output_size, kernel_size=self.t2t_params['kernel_size'], padding=self.t2t_params['padding'], stride=self.t2t_params['stride']) x = F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1), output_size=output_size, kernel_size=self.t2t_params['kernel_size'], padding=self.t2t_params['padding'], stride=self.t2t_params['stride']) x = F.unfold(x / normalizer, kernel_size=self.t2t_params['kernel_size'], padding=self.t2t_params['padding'], stride=self.t2t_params['stride']).permute( 0, 2, 1).contiguous().view(b, n, c) x = self.conv2(x) return x def window_partition(x, window_size): """ Args: x: shape is (B, T, H, W, C) window_size (tuple[int]): window size Returns: windows: (B*num_windows, T*window_size*window_size, C) """ B, T, H, W, C = x.shape x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous().view( -1, T * window_size[0] * window_size[1], C) return windows def window_partition_noreshape(x, window_size): """ Args: x: shape is (B, T, H, W, C) window_size (tuple[int]): window size Returns: windows: (B, num_windows_h, num_windows_w, T, window_size, window_size, C) """ B, T, H, W, C = x.shape x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous() return windows def window_reverse(windows, window_size, T, H, W): """ Args: windows: shape is (num_windows*B, T, window_size, window_size, C) window_size (tuple[int]): Window size T (int): Temporal length of video H (int): Height of image W (int): Width of image Returns: x: (B, T, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1])) x = windows.view(B, H // window_size[0], W // window_size[1], T, window_size[0], window_size[1], -1) x = x.permute(0, 3, 1, 4, 2, 5, 6).contiguous().view(B, T, H, W, -1) return x class WindowAttention(nn.Module): """Temporal focal window attention """ def __init__(self, dim, expand_size, window_size, focal_window, focal_level, num_heads, qkv_bias, pool_method): super().__init__() self.dim = dim self.expand_size = expand_size self.window_size = window_size # Wh, Ww self.pool_method = pool_method self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.focal_level = focal_level self.focal_window = focal_window if any(i > 0 for i in self.expand_size) and focal_level > 0: # get mask for rolled k and rolled v mask_tl = torch.ones(self.window_size[0], self.window_size[1]) mask_tl[:-self.expand_size[0], :-self.expand_size[1]] = 0 mask_tr = torch.ones(self.window_size[0], self.window_size[1]) mask_tr[:-self.expand_size[0], self.expand_size[1]:] = 0 mask_bl = torch.ones(self.window_size[0], self.window_size[1]) mask_bl[self.expand_size[0]:, :-self.expand_size[1]] = 0 mask_br = torch.ones(self.window_size[0], self.window_size[1]) mask_br[self.expand_size[0]:, self.expand_size[1]:] = 0 mask_rolled = torch.stack((mask_tl, mask_tr, mask_bl, mask_br), 0).flatten(0) self.register_buffer("valid_ind_rolled", mask_rolled.nonzero(as_tuple=False).view(-1)) if pool_method != "none" and focal_level > 1: self.unfolds = nn.ModuleList() # build relative position bias between local patch and pooled windows for k in range(focal_level - 1): stride = 2**k kernel_size = tuple(2 * (i // 2) + 2**k + (2**k - 1) for i in self.focal_window) # define unfolding operations self.unfolds += [ nn.Unfold(kernel_size=kernel_size, stride=stride, padding=tuple(i // 2 for i in kernel_size)) ] # define unfolding index for focal_level > 0 if k > 0: mask = torch.zeros(kernel_size) mask[(2**k) - 1:, (2**k) - 1:] = 1 self.register_buffer( "valid_ind_unfold_{}".format(k), mask.flatten(0).nonzero(as_tuple=False).view(-1)) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.softmax = nn.Softmax(dim=-1) def forward(self, x_all, mask_all=None): """ Args: x: input features with shape of (B, T, Wh, Ww, C) mask: (0/-inf) mask with shape of (num_windows, T*Wh*Ww, T*Wh*Ww) or None output: (nW*B, Wh*Ww, C) """ x = x_all[0] B, T, nH, nW, C = x.shape qkv = self.qkv(x).reshape(B, T, nH, nW, 3, C).permute(4, 0, 1, 2, 3, 5).contiguous() q, k, v = qkv[0], qkv[1], qkv[2] # B, T, nH, nW, C # partition q map (q_windows, k_windows, v_windows) = map( lambda t: window_partition(t, self.window_size).view( -1, T, self.window_size[0] * self.window_size[1], self. num_heads, C // self.num_heads).permute(0, 3, 1, 2, 4). contiguous().view(-1, self.num_heads, T * self.window_size[ 0] * self.window_size[1], C // self.num_heads), (q, k, v)) # q(k/v)_windows shape : [16, 4, 225, 128] if any(i > 0 for i in self.expand_size) and self.focal_level > 0: (k_tl, v_tl) = map( lambda t: torch.roll(t, shifts=(-self.expand_size[0], -self. expand_size[1]), dims=(2, 3)), (k, v)) (k_tr, v_tr) = map( lambda t: torch.roll(t, shifts=(-self.expand_size[0], self. expand_size[1]), dims=(2, 3)), (k, v)) (k_bl, v_bl) = map( lambda t: torch.roll(t, shifts=(self.expand_size[0], -self. expand_size[1]), dims=(2, 3)), (k, v)) (k_br, v_br) = map( lambda t: torch.roll(t, shifts=(self.expand_size[0], self. expand_size[1]), dims=(2, 3)), (k, v)) (k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows) = map( lambda t: window_partition(t, self.window_size).view( -1, T, self.window_size[0] * self.window_size[1], self. num_heads, C // self.num_heads), (k_tl, k_tr, k_bl, k_br)) (v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows) = map( lambda t: window_partition(t, self.window_size).view( -1, T, self.window_size[0] * self.window_size[1], self. num_heads, C // self.num_heads), (v_tl, v_tr, v_bl, v_br)) k_rolled = torch.cat( (k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows), 2).permute(0, 3, 1, 2, 4).contiguous() v_rolled = torch.cat( (v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows), 2).permute(0, 3, 1, 2, 4).contiguous() # mask out tokens in current window k_rolled = k_rolled[:, :, :, self.valid_ind_rolled] v_rolled = v_rolled[:, :, :, self.valid_ind_rolled] temp_N = k_rolled.shape[3] k_rolled = k_rolled.view(-1, self.num_heads, T * temp_N, C // self.num_heads) v_rolled = v_rolled.view(-1, self.num_heads, T * temp_N, C // self.num_heads) k_rolled = torch.cat((k_windows, k_rolled), 2) v_rolled = torch.cat((v_windows, v_rolled), 2) else: k_rolled = k_windows v_rolled = v_windows # q(k/v)_windows shape : [16, 4, 225, 128] # k_rolled.shape : [16, 4, 5, 165, 128] # ideal expanded window size 153 ((5+2*2)*(9+2*4)) # k_windows=45 expand_window=108 overlap_window=12 (since expand_size < window_size / 2) if self.pool_method != "none" and self.focal_level > 1: k_pooled = [] v_pooled = [] for k in range(self.focal_level - 1): stride = 2**k # B, T, nWh, nWw, C x_window_pooled = x_all[k + 1].permute(0, 3, 1, 2, 4).contiguous() nWh, nWw = x_window_pooled.shape[2:4] # generate mask for pooled windows mask = x_window_pooled.new(T, nWh, nWw).fill_(1) # unfold mask: [nWh*nWw//s//s, k*k, 1] unfolded_mask = self.unfolds[k](mask.unsqueeze(1)).view( 1, T, self.unfolds[k].kernel_size[0], self.unfolds[k].kernel_size[1], -1).permute(4, 1, 2, 3, 0).contiguous().\ view(nWh*nWw // stride // stride, -1, 1) if k > 0: valid_ind_unfold_k = getattr( self, "valid_ind_unfold_{}".format(k)) unfolded_mask = unfolded_mask[:, valid_ind_unfold_k] x_window_masks = unfolded_mask.flatten(1).unsqueeze(0) x_window_masks = x_window_masks.masked_fill( x_window_masks == 0, float(-100.0)).masked_fill(x_window_masks > 0, float(0.0)) mask_all[k + 1] = x_window_masks # generate k and v for pooled windows qkv_pooled = self.qkv(x_window_pooled).reshape( B, T, nWh, nWw, 3, C).permute(4, 0, 1, 5, 2, 3).view(3, -1, C, nWh, nWw).contiguous() # B*T, C, nWh, nWw k_pooled_k, v_pooled_k = qkv_pooled[1], qkv_pooled[2] # k_pooled_k shape: [5, 512, 4, 4] # self.unfolds[k](k_pooled_k) shape: [5, 23040 (512 * 5 * 9 ), 16] (k_pooled_k, v_pooled_k) = map( lambda t: self.unfolds[k] (t).view(B, T, C, self.unfolds[k].kernel_size[0], self. unfolds[k].kernel_size[1], -1) .permute(0, 5, 1, 3, 4, 2).contiguous().view( -1, T, self.unfolds[k].kernel_size[0] * self.unfolds[ k].kernel_size[1], self.num_heads, C // self. num_heads).permute(0, 3, 1, 2, 4).contiguous(), # (B x (nH*nW)) x nHeads x T x (unfold_wsize x unfold_wsize) x head_dim (k_pooled_k, v_pooled_k)) # k_pooled_k shape : [16, 4, 5, 45, 128] # select valid unfolding index if k > 0: (k_pooled_k, v_pooled_k) = map( lambda t: t[:, :, :, valid_ind_unfold_k], (k_pooled_k, v_pooled_k)) k_pooled_k = k_pooled_k.view( -1, self.num_heads, T * self.unfolds[k].kernel_size[0] * self.unfolds[k].kernel_size[1], C // self.num_heads) v_pooled_k = v_pooled_k.view( -1, self.num_heads, T * self.unfolds[k].kernel_size[0] * self.unfolds[k].kernel_size[1], C // self.num_heads) k_pooled += [k_pooled_k] v_pooled += [v_pooled_k] # k_all (v_all) shape : [16, 4, 5 * 210, 128] k_all = torch.cat([k_rolled] + k_pooled, 2) v_all = torch.cat([v_rolled] + v_pooled, 2) else: k_all = k_rolled v_all = v_rolled N = k_all.shape[-2] q_windows = q_windows * self.scale # B*nW, nHead, T*window_size*window_size, T*focal_window_size*focal_window_size attn = (q_windows @ k_all.transpose(-2, -1)) # T * 45 window_area = T * self.window_size[0] * self.window_size[1] # T * 165 window_area_rolled = k_rolled.shape[2] if self.pool_method != "none" and self.focal_level > 1: offset = window_area_rolled for k in range(self.focal_level - 1): # add attentional mask # mask_all[1] shape [1, 16, T * 45] bias = tuple((i + 2**k - 1) for i in self.focal_window) if mask_all[k + 1] is not None: attn[:, :, :window_area, offset:(offset + (T*bias[0]*bias[1]))] = \ attn[:, :, :window_area, offset:(offset + (T*bias[0]*bias[1]))] + \ mask_all[k+1][:, :, None, None, :].repeat( attn.shape[0] // mask_all[k+1].shape[1], 1, 1, 1, 1).view(-1, 1, 1, mask_all[k+1].shape[-1]) offset += T * bias[0] * bias[1] if mask_all[0] is not None: nW = mask_all[0].shape[0] attn = attn.view(attn.shape[0] // nW, nW, self.num_heads, window_area, N) attn[:, :, :, :, : window_area] = attn[:, :, :, :, :window_area] + mask_all[0][ None, :, None, :, :] attn = attn.view(-1, self.num_heads, window_area, N) attn = self.softmax(attn) else: attn = self.softmax(attn) x = (attn @ v_all).transpose(1, 2).reshape(attn.shape[0], window_area, C) x = self.proj(x) return x class TemporalFocalTransformerBlock(nn.Module): r""" Temporal Focal Transformer Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (tuple[int]): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm focal_level (int): The number level of focal window. focal_window (int): Window size of each focal window. n_vecs (int): Required for F3N. t2t_params (int): T2T parameters for F3N. """ def __init__(self, dim, num_heads, window_size=(5, 9), mlp_ratio=4., qkv_bias=True, pool_method="fc", focal_level=2, focal_window=(5, 9), norm_layer=nn.LayerNorm, n_vecs=None, t2t_params=None): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.expand_size = tuple(i // 2 for i in window_size) # TODO self.mlp_ratio = mlp_ratio self.pool_method = pool_method self.focal_level = focal_level self.focal_window = focal_window self.window_size_glo = self.window_size self.pool_layers = nn.ModuleList() if self.pool_method != "none": for k in range(self.focal_level - 1): window_size_glo = tuple( math.floor(i / (2**k)) for i in self.window_size_glo) self.pool_layers.append( nn.Linear(window_size_glo[0] * window_size_glo[1], 1)) self.pool_layers[-1].weight.data.fill_( 1. / (window_size_glo[0] * window_size_glo[1])) self.pool_layers[-1].bias.data.fill_(0) self.norm1 = norm_layer(dim) self.attn = WindowAttention(dim, expand_size=self.expand_size, window_size=self.window_size, focal_window=focal_window, focal_level=focal_level, num_heads=num_heads, qkv_bias=qkv_bias, pool_method=pool_method) self.norm2 = norm_layer(dim) self.mlp = FusionFeedForward(dim, n_vecs=n_vecs, t2t_params=t2t_params) def forward(self, x): output_size = x[1] x = x[0] B, T, H, W, C = x.shape shortcut = x x = self.norm1(x) shifted_x = x x_windows_all = [shifted_x] x_window_masks_all = [None] # partition windows tuple(i // 2 for i in window_size) if self.focal_level > 1 and self.pool_method != "none": # if we add coarser granularity and the pool method is not none for k in range(self.focal_level - 1): window_size_glo = tuple( math.floor(i / (2**k)) for i in self.window_size_glo) pooled_h = math.ceil(H / window_size_glo[0]) * (2**k) pooled_w = math.ceil(W / window_size_glo[1]) * (2**k) H_pool = pooled_h * window_size_glo[0] W_pool = pooled_w * window_size_glo[1] x_level_k = shifted_x # trim or pad shifted_x depending on the required size if H > H_pool: trim_t = (H - H_pool) // 2 trim_b = H - H_pool - trim_t x_level_k = x_level_k[:, :, trim_t:-trim_b] elif H < H_pool: pad_t = (H_pool - H) // 2 pad_b = H_pool - H - pad_t x_level_k = F.pad(x_level_k, (0, 0, 0, 0, pad_t, pad_b)) if W > W_pool: trim_l = (W - W_pool) // 2 trim_r = W - W_pool - trim_l x_level_k = x_level_k[:, :, :, trim_l:-trim_r] elif W < W_pool: pad_l = (W_pool - W) // 2 pad_r = W_pool - W - pad_l x_level_k = F.pad(x_level_k, (0, 0, pad_l, pad_r)) x_windows_noreshape = window_partition_noreshape( x_level_k.contiguous(), window_size_glo ) # B, nw, nw, T, window_size, window_size, C nWh, nWw = x_windows_noreshape.shape[1:3] x_windows_noreshape = x_windows_noreshape.view( B, nWh, nWw, T, window_size_glo[0] * window_size_glo[1], C).transpose(4, 5) # B, nWh, nWw, T, C, wsize**2 x_windows_pooled = self.pool_layers[k]( x_windows_noreshape).flatten(-2) # B, nWh, nWw, T, C x_windows_all += [x_windows_pooled] x_window_masks_all += [None] # nW*B, T*window_size*window_size, C attn_windows = self.attn(x_windows_all, mask_all=x_window_masks_all) # merge windows attn_windows = attn_windows.view(-1, T, self.window_size[0], self.window_size[1], C) shifted_x = window_reverse(attn_windows, self.window_size, T, H, W) # B T H' W' C # FFN x = shortcut + shifted_x y = self.norm2(x) x = x + self.mlp(y.view(B, T * H * W, C), output_size).view( B, T, H, W, C) return x, output_size