# Copyright (c) 2023-2024 DeepSeek. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from threading import Thread from typing import List import torch torch.jit.script = lambda f: f import transformers from transformers import ( AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, ) from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessor from deepseek_vl.utils.conversation import Conversation from transformers import BitsAndBytesConfig def load_model(model_path): vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True, load_in_8bit=True,low_cpu_mem_usage=True ) vl_gpt = vl_gpt.cuda().eval() return tokenizer, vl_gpt, vl_chat_processor def convert_conversation_to_prompts(conversation: Conversation): prompts = [] messages = conversation.messages for i in range(0, len(messages), 2): prompt = { "role": messages[i][0], "content": ( messages[i][1][0] if isinstance(messages[i][1], tuple) else messages[i][1] ), "images": [messages[i][1][1]] if isinstance(messages[i][1], tuple) else [], } response = {"role": messages[i + 1][0], "content": messages[i + 1][1]} prompts.extend([prompt, response]) return prompts class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = [stop.to("cuda") for stop in stops] def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs ): for stop in self.stops: if input_ids.shape[-1] < len(stop): continue if torch.all((stop == input_ids[0][-len(stop) :])).item(): return True return False @torch.inference_mode() def deepseek_generate( prompts: list, vl_gpt: torch.nn.Module, vl_chat_processor, tokenizer: transformers.PreTrainedTokenizer, stop_words: list, max_length: int = 256, temperature: float = 1.0, top_p: float = 1.0, repetition_penalty=1.1, ): prompts = prompts pil_images = list() for message in prompts: if "images" not in message: continue for pil_img in message["images"]: pil_images.append(pil_img) prepare_inputs = vl_chat_processor( conversations=prompts, images=pil_images, force_batchify=True ).to(vl_gpt.device) return generate( vl_gpt, tokenizer, prepare_inputs, max_length, temperature, repetition_penalty, top_p, stop_words, ) @torch.inference_mode() def generate( vl_gpt, tokenizer, prepare_inputs, max_gen_len: int = 256, temperature: float = 0, repetition_penalty=1.1, top_p: float = 0.95, stop_words: List[str] = [], ): """Stream the text output from the multimodality model with prompt and image inputs.""" inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) streamer = TextIteratorStreamer(tokenizer) stop_words_ids = [ torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words ] stopping_criteria = StoppingCriteriaList( [StoppingCriteriaSub(stops=stop_words_ids)] ) generation_config = dict( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=max_gen_len, do_sample=True, use_cache=True, streamer=streamer, stopping_criteria=stopping_criteria, ) if temperature > 0: generation_config.update( { "do_sample": True, "top_p": top_p, "temperature": temperature, "repetition_penalty": repetition_penalty, } ) else: generation_config["do_sample"] = False thread = Thread(target=vl_gpt.language_model.generate, kwargs=generation_config) thread.start() yield from streamer