# Copyright (c) 2023-2024 DeepSeek. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # -*- coding:utf-8 -*- import base64 from io import BytesIO import spaces import gradio as gr import torch torch.jit.script = lambda f: f from app_modules.gradio_utils import ( cancel_outputing, delete_last_conversation, reset_state, reset_textbox, transfer_input, wrap_gen_fn, ) from app_modules.overwrites import reload_javascript from app_modules.presets import CONCURRENT_COUNT, description, description_top, title from app_modules.utils import configure_logger, is_variable_assigned, strip_stop_words from inference import ( convert_conversation_to_prompts, deepseek_generate, load_model, ) from app_modules.conversation import SeparatorStyle def load_models(): models = { "DeepSeek-VL 7B": "deepseek-ai/deepseek-vl-1.3b-chat", } for model_name in models: models[model_name] = load_model(models[model_name]) return models logger = configure_logger() models = load_models() MODELS = sorted(list(models.keys())) def generate_prompt_with_history( text, image, vl_chat_processor, tokenizer, max_length=2048 ): """ Generate a prompt with history for the deepseek application. Args: text (str): The text prompt. image (str): The image prompt. history (list): List of previous conversation messages. tokenizer: The tokenizer used for encoding the prompt. max_length (int): The maximum length of the prompt. Returns: tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None. """ sft_format = "deepseek" user_role_ind = 0 bot_role_ind = 1 # Initialize conversation conversation = vl_chat_processor.new_chat_template() # if history: # conversation.messages = history if image is not None: if "" not in text: text = ( "" + "\n" + text ) # append the in a new line after the text prompt text = (text, image) conversation.append_message(conversation.roles[user_role_ind], text) conversation.append_message(conversation.roles[bot_role_ind], "") # Create a copy of the conversation to avoid history truncation in the UI conversation_copy = conversation.copy() logger.info("=" * 80) logger.info(get_prompt(conversation)) rounds = len(conversation.messages) // 2 for _ in range(rounds): current_prompt = get_prompt(conversation) current_prompt = ( current_prompt.replace("", "") if sft_format == "deepseek" else current_prompt ) if current_prompt.count("") > 2: for _ in range(len(conversation_copy.messages) - 2): conversation_copy.messages.pop(0) return conversation_copy if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length: return conversation_copy if len(conversation.messages) % 2 != 0: gr.Error("The messages between user and assistant are not paired.") return try: for _ in range(2): # pop out two messages in a row conversation.messages.pop(0) except IndexError: gr.Error("Input text processing failed, unable to respond in this round.") return None gr.Error("Prompt could not be generated within max_length limit.") return None def to_gradio_chatbot(conv): """Convert the conversation to gradio chatbot format.""" ret = [] for i, (role, msg) in enumerate(conv.messages[conv.offset :]): if i % 2 == 0: if type(msg) is tuple: msg, image = msg if isinstance(image, str): with open(image, "rb") as f: data = f.read() img_b64_str = base64.b64encode(data).decode() image_str = f'' msg = msg.replace("\n".join([""] * 4), image_str) else: max_hw, min_hw = max(image.size), min(image.size) aspect_ratio = max_hw / min_hw max_len, min_len = 800, 400 shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) longest_edge = int(shortest_edge * aspect_ratio) W, H = image.size if H > W: H, W = longest_edge, shortest_edge else: H, W = shortest_edge, longest_edge image = image.resize((W, H)) buffered = BytesIO() image.save(buffered, format="JPEG") img_b64_str = base64.b64encode(buffered.getvalue()).decode() img_str = f'user upload image' msg = msg.replace("", img_str) ret.append([msg, None]) else: ret[-1][-1] = msg return ret def to_gradio_history(conv): """Convert the conversation to gradio history state.""" return conv.messages[conv.offset :] def get_prompt(conv) -> str: """Get the prompt for generation.""" system_prompt = conv.system_template.format(system_message=conv.system_message) if conv.sep_style == SeparatorStyle.DeepSeek: seps = [conv.sep, conv.sep2] if system_prompt == "" or system_prompt is None: ret = "" else: ret = system_prompt + seps[0] for i, (role, message) in enumerate(conv.messages): if message: if type(message) is tuple: # multimodal message message, _ = message ret += role + ": " + message + seps[i % 2] else: ret += role + ":" return ret else: return conv.get_prompt @spaces.GPU @wrap_gen_fn def predict( text, image, chatbot, # history, top_p, temperature, repetition_penalty, max_length_tokens, max_context_length_tokens, model_select_dropdown, ): """ Function to predict the response based on the user's input and selected model. Parameters: user_text (str): The input text from the user. user_image (str): The input image from the user. chatbot (str): The chatbot's name. history (str): The history of the chat. top_p (float): The top-p parameter for the model. temperature (float): The temperature parameter for the model. max_length_tokens (int): The maximum length of tokens for the model. max_context_length_tokens (int): The maximum length of context tokens for the model. model_select_dropdown (str): The selected model from the dropdown. Returns: generator: A generator that yields the chatbot outputs, history, and status. """ print("running the prediction function") import os os.system('nvidia-smi') try: tokenizer, vl_gpt, vl_chat_processor = models[model_select_dropdown] if text == "": yield chatbot, history, "Empty context." return except KeyError: yield [[text, "No Model Found"]], [], "No Model Found" return conversation = generate_prompt_with_history( text, image, # history, vl_chat_processor, tokenizer, max_length=max_context_length_tokens, ) prompts = convert_conversation_to_prompts(conversation) stop_words = conversation.stop_str gradio_chatbot_output = to_gradio_chatbot(conversation) full_response = "" with torch.no_grad(): for x in deepseek_generate( prompts=prompts, vl_gpt=vl_gpt, vl_chat_processor=vl_chat_processor, tokenizer=tokenizer, stop_words=stop_words, max_length=max_length_tokens, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p, ): full_response += x response = strip_stop_words(full_response, stop_words) conversation.update_last_message(response) gradio_chatbot_output[-1][1] = response yield gradio_chatbot_output, to_gradio_history( conversation ), "Generating..." print("flushed result to gradio") torch.cuda.empty_cache() if is_variable_assigned("x"): print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}") print( f"temperature: {temperature}, top_p: {top_p}, repetition_penalty: {repetition_penalty}, max_length_tokens: {max_length_tokens}" ) yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success" def retry( text, image, chatbot, # history, top_p, temperature, repetition_penalty, max_length_tokens, max_context_length_tokens, model_select_dropdown, ): if len(history) == 0: yield (chatbot, history, "Empty context") return chatbot.pop() history.pop() text = history.pop()[-1] if type(text) is tuple: text, image = text yield from predict( text, image, chatbot, # history, top_p, temperature, repetition_penalty, max_length_tokens, max_context_length_tokens, model_select_dropdown, ) def build_demo(MODELS): with open("assets/custom.css", "r", encoding="utf-8") as f: customCSS = f.read() with gr.Blocks(theme=gr.themes.Soft(spacing_size="md")) as demo: history = gr.State([]) input_text = gr.State() input_image = gr.State() with gr.Row(): gr.HTML(title) status_display = gr.Markdown("Success", elem_id="status_display") gr.Markdown(description_top) with gr.Row(equal_height=True): with gr.Column(scale=4): with gr.Row(): chatbot = gr.Chatbot( elem_id="deepseek_chatbot", show_share_button=True, likeable=True, bubble_full_width=False, height=600, ) with gr.Row(): with gr.Column(scale=4): text_box = gr.Textbox( show_label=False, placeholder="Enter text", container=False ) with gr.Column( min_width=70, ): submitBtn = gr.Button("Send") with gr.Column( min_width=70, ): cancelBtn = gr.Button("Stop") with gr.Row(): emptyBtn = gr.Button( "๐Ÿงน New Conversation", ) retryBtn = gr.Button("๐Ÿ”„ Regenerate") delLastBtn = gr.Button("๐Ÿ—‘๏ธ Remove Last Turn") with gr.Column(): image_box = gr.Image(type="pil") with gr.Tab(label="Parameter Setting") as parameter_row: top_p = gr.Slider( minimum=-0, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p", ) temperature = gr.Slider( minimum=0, maximum=1.0, value=0.1, step=0.1, interactive=True, label="Temperature", ) repetition_penalty = gr.Slider( minimum=0.0, maximum=2.0, value=1.1, step=0.1, interactive=True, label="Repetition penalty", ) max_length_tokens = gr.Slider( minimum=0, maximum=2048, value=2048, step=8, interactive=True, label="Max Generation Tokens", ) max_context_length_tokens = gr.Slider( minimum=0, maximum=2048, value=2048, step=128, interactive=True, label="Max History Tokens", ) model_select_dropdown = gr.Dropdown( label="Select Models", choices=MODELS, multiselect=False, value=MODELS[0], interactive=True, ) examples_list = [ [ "examples/rap.jpeg", "Can you write me a master rap song that rhymes very well based on this image?", ], [ "examples/app.png", "What is this app about?", ], [ "examples/pipeline.png", "Help me write a python code based on the image.", ], [ "examples/chart.png", "Could you help me to re-draw this picture with python codes?", ], [ "examples/mirror.png", "How many people are there in the image. Why?", ], [ "examples/puzzle.png", "Can this 2 pieces combine together?", ], ] gr.Examples(examples=examples_list, inputs=[image_box, text_box]) gr.Markdown(description) input_widgets = [ input_text, input_image, chatbot, # history, top_p, temperature, repetition_penalty, max_length_tokens, max_context_length_tokens, model_select_dropdown, ] output_widgets = [chatbot, history, status_display] transfer_input_args = dict( fn=transfer_input, inputs=[text_box, image_box], outputs=[input_text, input_image, text_box, image_box, submitBtn], show_progress=True, ) predict_args = dict( fn=predict, inputs=input_widgets, outputs=output_widgets, show_progress=True, ) retry_args = dict( fn=retry, inputs=input_widgets, outputs=output_widgets, show_progress=True, ) reset_args = dict( fn=reset_textbox, inputs=[], outputs=[text_box, status_display] ) predict_events = [ text_box.submit(**transfer_input_args).then(**predict_args), submitBtn.click(**transfer_input_args).then(**predict_args), ] emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True) emptyBtn.click(**reset_args) retryBtn.click(**retry_args) delLastBtn.click( delete_last_conversation, [chatbot, history], output_widgets, show_progress=True, ) cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events) return demo if __name__ == "__main__": demo = build_demo(MODELS) demo.title = "DeepSeek-VL Chatbot" reload_javascript() demo.queue(max_size=20).launch( share=False, favicon_path="assets/favicon.ico", )