from collections import OrderedDict import torch.distributed as dist from mmcv.runner import OptimizerHook from torch._utils import ( _flatten_dense_tensors, _take_tensors, _unflatten_dense_tensors, ) def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): if bucket_size_mb > 0: bucket_size_bytes = bucket_size_mb * 1024 * 1024 buckets = _take_tensors(tensors, bucket_size_bytes) else: buckets = OrderedDict() for tensor in tensors: tp = tensor.type() if tp not in buckets: buckets[tp] = [] buckets[tp].append(tensor) buckets = buckets.values() for bucket in buckets: flat_tensors = _flatten_dense_tensors(bucket) dist.all_reduce(flat_tensors) flat_tensors.div_(world_size) for tensor, synced in zip( bucket, _unflatten_dense_tensors(flat_tensors, bucket)): tensor.copy_(synced) def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): grads = [ param.grad.data for param in params if param.requires_grad and param.grad is not None ] world_size = dist.get_world_size() if coalesce: _allreduce_coalesced(grads, world_size, bucket_size_mb) else: for tensor in grads: dist.all_reduce(tensor.div_(world_size)) class DistOptimizerHook(OptimizerHook): def __init__(self, grad_clip=None, coalesce=True, bucket_size_mb=-1): self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb def after_train_iter(self, runner): runner.optimizer.zero_grad() runner.outputs['loss'].backward() if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.step()