import argparse import os import os.path as osp import mmcv import numpy as np import torch from mogen.models import build_architecture from mmcv.runner import load_checkpoint from mmcv.parallel import MMDataParallel from mogen.utils.plot_utils import ( recover_from_ric, plot_3d_motion, t2m_kinematic_chain ) from scipy.ndimage import gaussian_filter def motion_temporal_filter(motion, sigma=1): motion = motion.reshape(motion.shape[0], -1) for i in range(motion.shape[1]): motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest") return motion.reshape(motion.shape[0], -1, 3) def plot_t2m(data, result_path, npy_path, caption): joint = recover_from_ric(torch.from_numpy(data).float(), 22).numpy() joint = motion_temporal_filter(joint, sigma=2.5) plot_3d_motion(result_path, t2m_kinematic_chain, joint, title=caption, fps=20) if npy_path is not None: np.save(npy_path, joint) def parse_args(): parser = argparse.ArgumentParser(description='mogen evaluation') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--text', help='motion description') parser.add_argument('--motion_length', type=int, help='expected motion length') parser.add_argument('--out', help='output animation file') parser.add_argument('--pose_npy', help='output pose sequence file', default=None) parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument( '--device', choices=['cpu', 'cuda'], default='cuda', help='device used for testing') args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) assert args.motion_length >= 16 and args.motion_length <= 196 # build the model and load checkpoint model = build_architecture(cfg.model) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) load_checkpoint(model, args.checkpoint, map_location='cpu') if args.device == 'cpu': model = model.cpu() else: model = MMDataParallel(model, device_ids=[0]) model.eval() dataset_name = cfg.data.test.dataset_name assert dataset_name == "human_ml3d" mean_path = "data/datasets/human_ml3d/mean.npy" std_path = "data/datasets/human_ml3d/std.npy" mean = np.load(mean_path) std = np.load(std_path) device = args.device text = args.text motion_length = args.motion_length motion = torch.zeros(1, motion_length, 263).to(device) motion_mask = torch.ones(1, motion_length).to(device) motion_length = torch.Tensor([motion_length]).long().to(device) model = model.to(device) input = { 'motion': motion, 'motion_mask': motion_mask, 'motion_length': motion_length, 'motion_metas': [{'text': text}], } all_pred_motion = [] with torch.no_grad(): input['inference_kwargs'] = {} output_list = [] output = model(**input)[0]['pred_motion'] pred_motion = output.cpu().detach().numpy() pred_motion = pred_motion * std + mean plot_t2m(pred_motion, args.out, args.pose_npy, text) if __name__ == '__main__': main()