import random import warnings import numpy as np import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import ( DistSamplerSeedHook, Fp16OptimizerHook, OptimizerHook, GradientCumulativeFp16OptimizerHook, GradientCumulativeOptimizerHook, build_runner) from mogen.core.distributed_wrapper import DistributedDataParallelWrapper from mogen.core.evaluation import DistEvalHook, EvalHook from mogen.core.optimizer import build_optimizers from mogen.datasets import build_dataloader, build_dataset from mogen.utils import get_root_logger def set_random_seed(seed, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def train_model(model, dataset, cfg, distributed=False, validate=False, timestamp=None, device='cuda', meta=None): """Main api for training model.""" logger = get_root_logger(cfg.log_level) # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, # cfg.gpus will be ignored if distributed num_gpus=len(cfg.gpu_ids), dist=distributed, round_up=True, sampler_cfg=cfg.data.sampler_cfg, batch_sampler_cfg=cfg.data.batch_sampler_cfg, seed=cfg.seed) for ds in dataset ] # determine whether use adversarial training precess or not use_adversarial_train = cfg.get('use_adversarial_train', False) # put model on gpus if distributed: find_unused_parameters = cfg.get('find_unused_parameters', True) # Sets the `find_unused_parameters` parameter in # torch.nn.parallel.DistributedDataParallel if use_adversarial_train: # Use DistributedDataParallelWrapper for adversarial training model = DistributedDataParallelWrapper( model, device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: if device == 'cuda': model = MMDataParallel(model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) elif device == 'cpu': model = model.cpu() else: raise ValueError(F'unsupported device name {device}.') # build runner optimizer = build_optimizers(model, cfg.optimizer) if cfg.get('runner') is None: cfg.runner = { 'type': 'EpochBasedRunner', 'max_epochs': cfg.total_epochs } warnings.warn( 'config is now expected to have a `runner` section, ' 'please set `runner` in your config.', UserWarning) runner = build_runner(cfg.runner, default_args=dict(model=model, batch_processor=None, optimizer=optimizer, work_dir=cfg.work_dir, logger=logger, meta=meta)) # an ugly walkaround to make the .log and .log.json filenames the same runner.timestamp = timestamp if use_adversarial_train: # The optimizer step process is included in the train_step function # of the model, so the runner should NOT include optimizer hook. optimizer_config = None else: if distributed and 'type' not in cfg.optimizer_config: optimizer_config = OptimizerHook(**cfg.optimizer_config) else: optimizer_config = cfg.optimizer_config # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config, cfg.get('momentum_config', None), custom_hooks_config=cfg.get( 'custom_hooks', None)) if distributed: runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) val_dataloader = build_dataloader( val_dataset, samples_per_gpu=cfg.data.samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False, round_up=True) eval_cfg = cfg.get('evaluation', {}) eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner' eval_hook = DistEvalHook if distributed else EvalHook runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow)