import numpy as np import gradio as gr from huggingface_hub import from_pretrained_fastai from lime import lime_image from skimage.segmentation import mark_boundaries learn = from_pretrained_fastai('mindwrapped/pokemon-card-checker') def check_card(img): pred_label, _, scores = learn.predict(img) scores = scores.detach().numpy() scores = {'real': float(scores[1]), 'fake': float(scores[0])} print(np.array(img).shape) # Lime Explanation explainer = lime_image.LimeImageExplainer() explanation = explainer.explain_instance( np.array(img), classifier_fn=classify_cards, labels=['fake', 'real'], num_samples=100, random_seed=42, ) temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=10, hide_rest=False) img_boundry = mark_boundaries(temp/255.0, mask) return scores, img_boundry def classify_cards(imgs): print(imgs.shape) scores = [] for i in range(imgs.shape[0]): pred_label, _, score = learn.predict(imgs[i]) scores.append(score.detach().numpy()) scores = np.array(scores) print(scores.shape) return scores demo = gr.Interface( fn=check_card, inputs='image', outputs=["label", "image"], examples=['real-1.jpeg','real-2.jpeg','fake-1.jpeg','fake-2.jpeg','real-3.jpeg','real-4.jpeg','fake-3.jpeg','fake-4.jpeg'], title='Pokemon Card Checker', description='A resnet34 model fine-tuned to determine whether Pokemon cards are real or fake. \n\nAdded [LIME](https://github.com/marcotcr/lime) to show what contributed to the predicted label. \n\n[Dataset](https://www.kaggle.com/datasets/ongshujian/real-and-fake-pokemon-cards) created by [Shujian Ong](https://www.kaggle.com/ongshujian).', article='Can you guess which cards are real and fake? \n\nI can\'t :D \n\n([View Labels](https://gist.github.com/mindwrapped/e5aad747757ef006037a1a1982be34fc)) \n\n![visitor badge](https://visitor-badge.glitch.me/badge?page_id=mindwrapped.pokemon-card-checker-space)', live=False, ) demo.launch(debug=True)