reimagine-it / scripts /build_bpe_subword_nmt.py
Alberto Carmona
Track error cloning the repo
ebd4e51
raw
history blame
7.77 kB
"""
Preprocess a raw json dataset into hdf5/json files for use in data_loader.lua
Input: json file that has the form
[{ file_path: 'path/img.jpg', captions: ['a caption', ...] }, ...]
example element in this list would look like
{'captions': [u'A man with a red helmet on a small moped on a dirt road. ', u'Man riding a motor bike on a dirt road on the countryside.', u'A man riding on the back of a motorcycle.', u'A dirt path with a young person on a motor bike rests to the foreground of a verdant area with a bridge and a background of cloud-wreathed mountains. ', u'A man in a red shirt and a red hat is on a motorcycle on a hill side.'], 'file_path': u'val2014/COCO_val2014_000000391895.jpg', 'id': 391895}
This script reads this json, does some basic preprocessing on the captions
(e.g. lowercase, etc.), creates a special UNK token, and encodes everything to arrays
Output: a json file and an hdf5 file
The hdf5 file contains several fields:
/labels is (M,max_length) uint32 array of encoded labels, zero padded
/label_start_ix and /label_end_ix are (N,) uint32 arrays of pointers to the
first and last indices (in range 1..M) of labels for each image
/label_length stores the length of the sequence for each of the M sequences
The json file has a dict that contains:
- an 'ix_to_word' field storing the vocab in form {ix:'word'}, where ix is 1-indexed
- an 'images' field that is a list holding auxiliary information for each image,
such as in particular the 'split' it was assigned to.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import json
import argparse
from random import shuffle, seed
import string
# non-standard dependencies:
import h5py
import numpy as np
import torch
import torchvision.models as models
import skimage.io
from PIL import Image
import codecs
import tempfile
from subword_nmt import learn_bpe, apply_bpe
# python scripts/build_bpe_subword_nmt.py --input_json data/dataset_coco.json --output_json data/cocotalkbpe.json --output_h5 data/cocotalkbpe
def build_vocab(imgs, params):
# count up the number of words
captions = []
for img in imgs:
for sent in img['sentences']:
captions.append(' '.join(sent['tokens']))
captions='\n'.join(captions)
all_captions = tempfile.NamedTemporaryFile(delete=False)
all_captions.close()
with open(all_captions.name, 'w') as txt_file:
txt_file.write(captions)
#
codecs_output = tempfile.NamedTemporaryFile(delete=False)
codecs_output.close()
with codecs.open(codecs_output.name, 'w', encoding='UTF-8') as output:
learn_bpe.learn_bpe(codecs.open(all_captions.name, encoding='UTF-8'), output, params['symbol_count'])
with codecs.open(codecs_output.name, encoding='UTF-8') as codes:
bpe = apply_bpe.BPE(codes)
tmp = tempfile.NamedTemporaryFile(delete=False)
tmp.close()
tmpout = codecs.open(tmp.name, 'w', encoding='UTF-8')
for _, img in enumerate(imgs):
img['final_captions'] = []
for sent in img['sentences']:
txt = ' '.join(sent['tokens'])
txt = bpe.segment(txt).strip()
img['final_captions'].append(txt.split(' '))
tmpout.write(txt)
tmpout.write('\n')
if _ < 20:
print(txt)
tmpout.close()
tmpin = codecs.open(tmp.name, encoding='UTF-8')
vocab = learn_bpe.get_vocabulary(tmpin)
vocab = sorted(vocab.keys(), key=lambda x: vocab[x], reverse=True)
# Always insert UNK
print('inserting the special UNK token')
vocab.append('UNK')
print('Vocab size:', len(vocab))
os.remove(all_captions.name)
with open(codecs_output.name, 'r') as codes:
bpe = codes.read()
os.remove(codecs_output.name)
os.remove(tmp.name)
return vocab, bpe
def encode_captions(imgs, params, wtoi):
"""
encode all captions into one large array, which will be 1-indexed.
also produces label_start_ix and label_end_ix which store 1-indexed
and inclusive (Lua-style) pointers to the first and last caption for
each image in the dataset.
"""
max_length = params['max_length']
N = len(imgs)
M = sum(len(img['final_captions']) for img in imgs) # total number of captions
label_arrays = []
label_start_ix = np.zeros(N, dtype='uint32') # note: these will be one-indexed
label_end_ix = np.zeros(N, dtype='uint32')
label_length = np.zeros(M, dtype='uint32')
caption_counter = 0
counter = 1
for i,img in enumerate(imgs):
n = len(img['final_captions'])
assert n > 0, 'error: some image has no captions'
Li = np.zeros((n, max_length), dtype='uint32')
for j,s in enumerate(img['final_captions']):
label_length[caption_counter] = min(max_length, len(s)) # record the length of this sequence
caption_counter += 1
for k,w in enumerate(s):
if k < max_length:
Li[j,k] = wtoi[w]
# note: word indices are 1-indexed, and captions are padded with zeros
label_arrays.append(Li)
label_start_ix[i] = counter
label_end_ix[i] = counter + n - 1
counter += n
L = np.concatenate(label_arrays, axis=0) # put all the labels together
assert L.shape[0] == M, 'lengths don\'t match? that\'s weird'
assert np.all(label_length > 0), 'error: some caption had no words?'
print('encoded captions to array of size ', L.shape)
return L, label_start_ix, label_end_ix, label_length
def main(params):
imgs = json.load(open(params['input_json'], 'r'))
imgs = imgs['images']
seed(123) # make reproducible
# create the vocab
vocab, bpe = build_vocab(imgs, params)
itow = {i+1:w for i,w in enumerate(vocab)} # a 1-indexed vocab translation table
wtoi = {w:i+1 for i,w in enumerate(vocab)} # inverse table
# encode captions in large arrays, ready to ship to hdf5 file
L, label_start_ix, label_end_ix, label_length = encode_captions(imgs, params, wtoi)
# create output h5 file
N = len(imgs)
f_lb = h5py.File(params['output_h5']+'_label.h5', "w")
f_lb.create_dataset("labels", dtype='uint32', data=L)
f_lb.create_dataset("label_start_ix", dtype='uint32', data=label_start_ix)
f_lb.create_dataset("label_end_ix", dtype='uint32', data=label_end_ix)
f_lb.create_dataset("label_length", dtype='uint32', data=label_length)
f_lb.close()
# create output json file
out = {}
out['ix_to_word'] = itow # encode the (1-indexed) vocab
out['images'] = []
out['bpe'] = bpe
for i,img in enumerate(imgs):
jimg = {}
jimg['split'] = img['split']
if 'filename' in img: jimg['file_path'] = os.path.join(img['filepath'], img['filename']) # copy it over, might need
if 'cocoid' in img: jimg['id'] = img['cocoid'] # copy over & mantain an id, if present (e.g. coco ids, useful)
if params['images_root'] != '':
with Image.open(os.path.join(params['images_root'], img['filepath'], img['filename'])) as _img:
jimg['width'], jimg['height'] = _img.size
out['images'].append(jimg)
json.dump(out, open(params['output_json'], 'w'))
print('wrote ', params['output_json'])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# input json
parser.add_argument('--input_json', required=True, help='input json file to process into hdf5')
parser.add_argument('--output_json', default='data.json', help='output json file')
parser.add_argument('--output_h5', default='data', help='output h5 file')
parser.add_argument('--images_root', default='', help='root location in which images are stored, to be prepended to file_path in input json')
# options
parser.add_argument('--max_length', default=16, type=int, help='max length of a caption, in number of words. captions longer than this get clipped.')
parser.add_argument('--symbol_count', default=10000, type=int, help='only words that occur more than this number of times will be put in vocab')
args = parser.parse_args()
params = vars(args) # convert to ordinary dict
print('parsed input parameters:')
print(json.dumps(params, indent = 2))
main(params)