import os import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("milyiyo/paraphraser-german-mt5-small") model = AutoModelForSeq2SeqLM.from_pretrained("milyiyo/paraphraser-german-mt5-small") def generate_v1(inputs, count): """Generate text using a Beam Search strategy with repetition penalty.""" model_outputs = model.generate(inputs["input_ids"], early_stopping=True, length_penalty=1.0, max_length=1024, no_repeat_ngram_size=2, num_beams=10, repetition_penalty=3.5, num_return_sequences=count ) sentences = [] for output in model_outputs: sentences.append(tokenizer.decode(output, skip_special_tokens=True)) return sentences def generate_v2(inputs, count): """Generate text using a Beam Search strategy.""" model_outputs = model.generate(inputs["input_ids"], early_stopping=True, length_penalty=2.0, max_length=1024, no_repeat_ngram_size=2, num_beams=5, temperature=1.5, num_return_sequences=count ) sentences = [] for output in model_outputs: sentences.append(tokenizer.decode(output, skip_special_tokens=True)) return sentences def generate_v3(inputs, count): """Generate text using a Diverse Beam Search strategy.""" model_outputs = model.generate(inputs["input_ids"], num_beams=5, max_length=1024, temperature=1.5, num_beam_groups=5, diversity_penalty=2.0, no_repeat_ngram_size=2, early_stopping=True, length_penalty=2.0, num_return_sequences=count) sentences = [] for output in model_outputs: sentences.append(tokenizer.decode(output, skip_special_tokens=True)) return sentences def generate_v4(encoding, count): """Generate text using a Diverse Beam Search strategy.""" print(encoding) input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"] print(input_ids) print(attention_masks) outputs = model.generate(input_ids=input_ids, attention_mask=attention_masks, max_length=512, do_sample=True, top_k=120, top_p=0.95, early_stopping=True, num_return_sequences=count) res = [] for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) res.append(line) return res def paraphrase(sentence: str, count: str): p_count = int(count) if p_count <= 0 or len(sentence.strip()) == 0: return {'result': []} sentence_input = sentence text = f"paraphrase: {sentence_input} " # encoding = tokenizer.encode_plus(text, padding=True, return_tensors="pt") encoding = tokenizer(text, return_tensors="pt") # input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"] # outputs = model.generate( # input_ids=input_ids, attention_mask=attention_masks, # max_length=512, # 256, # do_sample=True, # top_k=120, # top_p=0.95, # early_stopping=True, # num_return_sequences=p_count # ) # res = [] # for output in outputs: # line = tokenizer.decode( # output, skip_special_tokens=True, clean_up_tokenization_spaces=True) # res.append(line) # print(res) # input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"] outputs = model.generate(input_ids=input_ids, attention_mask=attention_masks, max_length=512, do_sample=True, top_k=120, top_p=0.95, early_stopping=True, num_return_sequences=p_count) result_v4 = [] for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) result_v4.append(line) # return { 'result': { # 'generate_v1':generate_v1(encoding, count), # 'generate_v2':generate_v2(encoding, count), # 'generate_v3':generate_v3(encoding, count), 'generate_v4':result_v4 } } def paraphrase_dummy(sentence: str, count: str): return {'result': []} iface = gr.Interface(fn=paraphrase, inputs=[ gr.inputs.Textbox(lines=2, placeholder=None, label='Sentence'), gr.inputs.Number(default=3, label='Paraphrases count'), ], outputs=[gr.outputs.JSON(label=None)]) iface.launch()