# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html """Helper for adding automatically tracked values to Tensorboard. Autosummary creates an identity op that internally keeps track of the input values and automatically shows up in TensorBoard. The reported value represents an average over input components. The average is accumulated constantly over time and flushed when save_summaries() is called. Notes: - The output tensor must be used as an input for something else in the graph. Otherwise, the autosummary op will not get executed, and the average value will not get accumulated. - It is perfectly fine to include autosummaries with the same name in several places throughout the graph, even if they are executed concurrently. - It is ok to also pass in a python scalar or numpy array. In this case, it is added to the average immediately. """ from collections import OrderedDict import numpy as np import tensorflow as tf from tensorboard import summary as summary_lib from tensorboard.plugins.custom_scalar import layout_pb2 from . import tfutil from .tfutil import TfExpression from .tfutil import TfExpressionEx # Enable "Custom scalars" tab in TensorBoard for advanced formatting. # Disabled by default to reduce tfevents file size. enable_custom_scalars = False _dtype = tf.float64 _vars = OrderedDict() # name => [var, ...] _immediate = OrderedDict() # name => update_op, update_value _finalized = False _merge_op = None def _create_var(name: str, value_expr: TfExpression) -> TfExpression: """Internal helper for creating autosummary accumulators.""" assert not _finalized name_id = name.replace("/", "_") v = tf.cast(value_expr, _dtype) if v.shape.is_fully_defined(): size = np.prod(v.shape.as_list()) size_expr = tf.constant(size, dtype=_dtype) else: size = None size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype)) if size == 1: if v.shape.ndims != 0: v = tf.reshape(v, []) v = [size_expr, v, tf.square(v)] else: v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))] v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype)) with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None): var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)] update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v)) if name in _vars: _vars[name].append(var) else: _vars[name] = [var] return update_op def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx: """Create a new autosummary. Args: name: Name to use in TensorBoard value: TensorFlow expression or python value to track passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node. Example use of the passthru mechanism: n = autosummary('l2loss', loss, passthru=n) This is a shorthand for the following code: with tf.control_dependencies([autosummary('l2loss', loss)]): n = tf.identity(n) """ tfutil.assert_tf_initialized() name_id = name.replace("/", "_") if tfutil.is_tf_expression(value): with tf.name_scope("summary_" + name_id), tf.device(value.device): condition = tf.convert_to_tensor(condition, name='condition') update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op) with tf.control_dependencies([update_op]): return tf.identity(value if passthru is None else passthru) else: # python scalar or numpy array assert not tfutil.is_tf_expression(passthru) assert not tfutil.is_tf_expression(condition) if condition: if name not in _immediate: with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None): update_value = tf.placeholder(_dtype) update_op = _create_var(name, update_value) _immediate[name] = update_op, update_value update_op, update_value = _immediate[name] tfutil.run(update_op, {update_value: value}) return value if passthru is None else passthru def finalize_autosummaries() -> None: """Create the necessary ops to include autosummaries in TensorBoard report. Note: This should be done only once per graph. """ global _finalized tfutil.assert_tf_initialized() if _finalized: return None _finalized = True tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list]) # Create summary ops. with tf.device(None), tf.control_dependencies(None): for name, vars_list in _vars.items(): name_id = name.replace("/", "_") with tfutil.absolute_name_scope("Autosummary/" + name_id): moments = tf.add_n(vars_list) moments /= moments[0] with tf.control_dependencies([moments]): # read before resetting reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list] with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting mean = moments[1] std = tf.sqrt(moments[2] - tf.square(moments[1])) tf.summary.scalar(name, mean) if enable_custom_scalars: tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std) tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std) # Setup layout for custom scalars. layout = None if enable_custom_scalars: cat_dict = OrderedDict() for series_name in sorted(_vars.keys()): p = series_name.split("/") cat = p[0] if len(p) >= 2 else "" chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1] if cat not in cat_dict: cat_dict[cat] = OrderedDict() if chart not in cat_dict[cat]: cat_dict[cat][chart] = [] cat_dict[cat][chart].append(series_name) categories = [] for cat_name, chart_dict in cat_dict.items(): charts = [] for chart_name, series_names in chart_dict.items(): series = [] for series_name in series_names: series.append(layout_pb2.MarginChartContent.Series( value=series_name, lower="xCustomScalars/" + series_name + "/margin_lo", upper="xCustomScalars/" + series_name + "/margin_hi")) margin = layout_pb2.MarginChartContent(series=series) charts.append(layout_pb2.Chart(title=chart_name, margin=margin)) categories.append(layout_pb2.Category(title=cat_name, chart=charts)) layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories)) return layout def save_summaries(file_writer, global_step=None): """Call FileWriter.add_summary() with all summaries in the default graph, automatically finalizing and merging them on the first call. """ global _merge_op tfutil.assert_tf_initialized() if _merge_op is None: layout = finalize_autosummaries() if layout is not None: file_writer.add_summary(layout) with tf.device(None), tf.control_dependencies(None): _merge_op = tf.summary.merge_all() file_writer.add_summary(_merge_op.eval(), global_step)