import gradio as gr import soundfile as sf import torch import numpy as np import librosa from transformers import AutoProcessor, Wav2Vec2BertForCTC import spaces MODEL_NAME = "mikr/w2v-bert-2.0-czech-colab-cv16" device = 0 if torch.cuda.is_available() else "cpu" print("device:",device) processor = AutoProcessor.from_pretrained(MODEL_NAME) model = Wav2Vec2BertForCTC.from_pretrained(MODEL_NAME).to(device) @spaces.GPU def transcribe(audio_path): a, s = librosa.load(audio_path, sr=16_000) # inputs = processor(a, sampling_rate=s, return_tensors="pt") input_values = processor(a, sampling_rate=s, return_tensors="pt").input_features with torch.no_grad(): logits = model(input_values.to(device)).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe speech transcription = processor.batch_decode(predicted_ids) return transcription[0] iface = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="upload", type="filepath", label="Upload Audio File"), # Audio file upload ], outputs="text", theme="huggingface", title="Czech W2V-BERT 2.0 speech encoder demo - transcribe Czech Audio", description=( "Transcribe audio inputs with the click of a button! Demo uses the fine-tuned" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) from Facebook W2V-BERT 2.0 speech encoder " "and 🤗 Transformers to transcribe audio files of arbitrary length." ), allow_flagging="never", ) iface.launch(server_name="0.0.0.0")