import gradio as gr import pickle categories = ['Telecaster', 'Stratocaster', 'Jazzmaster'] examples = ['stratocaster.jpt', 'telecaster.jpg', 'jazzmaster.jpg'] image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() # Load the trained model from the model.pkl file with open("model.pkl", "rb") as f: model = pickle.load(f) def predict(image): # image = cv2.resize(image, (224, 224)) # image = np.expand_dims(image, axis=0) prediction, idx, probabilities = model.predict(image) return dict(zip(categories, map(float, probabilities))) iface = gr.Interface(fn=predict, inputs=image, outputs=label, examples=examples, capture_session=True) iface.launch()