########################################################################## # app.py - Pennwick Honeybee Robot # # HuggingFace Spaces application to provide honeybee expertise # with open-source models ( hkunlp/instructor-xl ) # # Mike Pastor February 21, 2024 import streamlit as st from streamlit.components.v1 import html # from dotenv import load_dotenv from PyPDF2 import PdfReader from PIL import Image # Local file from htmlTemplates import css, bot_template, user_template # from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain_community.embeddings import HuggingFaceInstructEmbeddings # from langchain.vectorstores import FAISS from langchain_community.vectorstores import FAISS from langchain.text_splitter import CharacterTextSplitter from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain # from langchain.llms import HuggingFaceHub from langchain_community.llms import HuggingFaceHub ################################################################################## # Admin flags DISPLAY_DIALOG_LINES = 6 SESSION_STARTED = False # MODEL_NAME="deepset/roberta-base-squad2" MODEL_NAME="BEE-spoke-data/TinyLlama-3T-1.1bee" ################################################################################## def extract_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text ################################################################################## # Chunk size and overlap must not exceed the models capacity! # def extract_bitesize_pieces(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=800, # 1000 chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks ################################################################################## def prepare_embedding_vectors(text_chunks): st.write('Here in vector store....', unsafe_allow_html=True) # embeddings = OpenAIEmbeddings() # pip install InstructorEmbedding # pip install sentence-transformers==2.2.2 embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") st.write('Here in vector store - got embeddings ', unsafe_allow_html=True) # from InstructorEmbedding import INSTRUCTOR # model = INSTRUCTOR('hkunlp/instructor-xl') # sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments" # instruction = "Represent the Science title:" # embeddings = model.encode([[instruction, sentence]]) # embeddings = model.encode(text_chunks) print('have Embeddings: ') # text_chunks="this is a test" # FAISS, Chroma and other vector databases # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) st.write('FAISS succeeds: ') return vectorstore ################################################################################## def prepare_conversation(vectorstore): # llm = ChatOpenAI() # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) # google/bigbird-roberta-base facebook/bart-large llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.7, "max_length": 512}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory, ) return conversation_chain ################################################################################## def process_user_question(user_question): # if not SESSION_STARTED: # print('No Session') # st.write( 'Please upload and analyze your PDF files first!') # return if user_question == None: print('question is null') return if user_question == '': print('question is blank') return if st == None: print('session is null') return if st.session_state == None: print('session STATE is null') return print('question is: ', user_question) print('\nsession is: ', st) # try: # response = st.session_state.conversation({'question': user_question}) # # response = st.session_state.conversation({'summarization': user_question}) # st.session_state.chat_history = response['chat_history'] # Exception: # st.write( 'Please upload and analyze your PDF files first!') # return # st.empty() # try: # st.session_state.conversation({'question': "Summarize the document"}) # # if "key" not in st.session_state: # # st.write('Good') # except: # st.error("Please upload and analyze your PDF files first!") # return # if st.session_state.conversation == None: # st.error("Please upload and analyze your PDF files first!") # return # # response = st.session_state.conversation({'question': user_question}) # st.session_state.chat_history = response['chat_history'] # results_size = len(response['chat_history']) # # results_string = "" # # print('results_size is: ', results_size) # # for i, message in enumerate(st.session_state.chat_history): # # # Scrolling does not display the last printed line, # # so only print the last 6 lines # # # print('results_size on msg: ', results_size, i, (results_size - DISPLAY_DIALOG_LINES)) # if results_size > DISPLAY_DIALOG_LINES: # if i < (results_size - DISPLAY_DIALOG_LINES): # continue # # if i % 2 == 0: # # st.write(user_template.replace( # # "{{MSG}}", message.content), unsafe_allow_html=True) # # results_string += ("

" + message.content + "

") # # else: # # st.write(bot_template.replace( # # "{{MSG}}", message.content), unsafe_allow_html=True) # # results_string += ("

" + "-- " + message.content + "

") st.write(('Question: ' + user_question), unsafe_allow_html=True) from transformers import pipeline # Choose a question answering pipeline (e.g., 'question-answering') nlp = pipeline("question-answering") # Specify the model name or identifier (e.g., 'deepset/roberta-base-squad2') model_name = MODEL_NAME # Prepare the question and context (optional) # question = "What is the capital of France?" # context = "France is a country located in Western Europe. It is bordered by the Atlantic Ocean to the west, the Mediterranean Sea to the south, and Belgium, Luxembourg, Germany, Switzerland, Italy, and Spain to the east and north." context = "You are an expert Apiarist and answer all questions regarding Honeybees." # context = " " # Ask the question answer = nlp(question= ('Question: '+user_question), context=context, model=model_name) # Print the answer print(f"Answer: {answer['answer']}") print(f"Score: {answer['score']}") st.write( ('Answer= '+answer['answer']), unsafe_allow_html=True) results_string = answer['answer'] + ' - Probability= ' + str( answer['score'] ) html(results_string, height=100, scrolling=True) ################################################################################### def main(): print('Pennwick Starting up...\n') # Load the environment variables - if any # load_dotenv() ################################################################################## # st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=":books:") # im = Image.open("robot_icon.ico") # st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=im ) # st.set_page_config(page_title="Pennwick PDF Analyzer") # import base64 # from PIL import Image # # Open your image # image = Image.open("robot_icon.ico") # # Convert image to base64 string # with open("robot_icon.ico", "rb") as f: # encoded_string = base64.b64encode(f.read()).decode() # # Set page config with base64 string # st.set_page_config(page_title="Pennwick File Analyzer 2", page_icon=f"data:image/ico;base64,{encoded_string}") st.set_page_config(page_title="Pennwick Honeybee Robot", page_icon="./HoneybeeLogo.ico") print('prepared page...\n') ################### st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None # st.header("Pennwick File Analyzer :shark:") # st.header("Pennwick File Analyzer 2") # st.image("robot_icon.png", width=96) st.image("./HoneybeeLogo.png", width=96) st.header(f"Pennwick Honeybee Robot") user_question = None user_question = st.text_input("Ask the Open Source - "+MODEL_NAME+" - Model any question about Honeybees...") if user_question != None: print('calling process question', user_question) process_user_question(user_question) # st.write( user_template, unsafe_allow_html=True) # st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True) # st.write(bot_template.replace( "{{MSG}}", "Hello human!"), unsafe_allow_html=True) # # with st.sidebar: # # st.subheader("Which documents would you like to analyze?") # st.subheader("(no data is saved beyond the session)") # # pdf_docs = st.file_uploader( # "Upload your PDF documents here and click on 'Analyze'", accept_multiple_files=True) # # # Upon button press # if st.button("Analyze these files"): # with st.spinner("Processing..."): # ################################################################# # # Track the overall time for file processing into Vectors # # # # from datetime import datetime # global_now = datetime.now() # global_current_time = global_now.strftime("%H:%M:%S") # st.write("Vectorizing Files - Current Time =", global_current_time) # # # get pdf text # raw_text = extract_pdf_text(pdf_docs) # # st.write(raw_text) # # # # get the text chunks # text_chunks = extract_bitesize_pieces(raw_text) # # st.write(text_chunks) # # # # create vector store # vectorstore = prepare_embedding_vectors(text_chunks) # # # # create conversation chain # st.session_state.conversation = prepare_conversation(vectorstore) # # SESSION_STARTED = True # # # Mission Complete! # global_later = datetime.now() # st.write("Files Vectorized - Total EXECUTION Time =", # (global_later - global_now), global_later) # if __name__ == '__main__': main()