import gradio as gr from huggingface_hub import InferenceClient from llama_cpp import Llama # Initialize the InferenceClient client = InferenceClient() llm = Llama.from_pretrained( repo_id="mradermacher/OpenELM-1_1B-Instruct-GGUF", filename="OpenELM-1_1B-Instruct.Q4_K_M.gguf", ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" # Use the client to get the chat completion for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message['choices'][0]['delta']['content'] response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly, conversational, helpful, and informative chatbot, designed to help users as best as possible. Responses should be fun to read, including the use of appropriate emojis in answers, wherever necesssary.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()