import gradio as gr from huggingface_hub import InferenceClient from transformers import pipeline # Define the respond function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Define the initial message for the chat messages = [ {"role": "user", "content": message}, ] # Create a pipeline for text generation pipe = pipeline("text-generation", model="codefuse-ai/CodeFuse-DeepSeek-33B") pipe(messages) response = "" # Use the InferenceClient to get responses for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Setup Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) # Launch the Gradio app if __name__ == "__main__": demo.launch()