### PRE ### import os os.system('git clone https://github.com/ggerganov/whisper.cpp.git') os.system('make -C ./whisper.cpp') MODELS_TO_DOWNLOAD = ['base', 'small', 'tiny', 'medium'] # ['tiny', 'small', 'base', 'medium', 'large'] for model_name in MODELS_TO_DOWNLOAD: os.system(f'bash ./whisper.cpp/models/download-ggml-model.sh {model_name}') ### BODY ### import os import requests import json import base64 import gradio as gr from pathlib import Path import pysrt import pandas as pd import re import time import subprocess import shlex from pytube import YouTube import torch INTRO_MSG = ''' ####
There are many not very widely spoken languages for which it is quite hard to find learning materials, especially well dubbed videos (target language video with target language subs). This tool will hopefully transcribe and add subs to your videos. At least for me this is a nice tool to practice both listening and reading skills. This is a 'one-click' variant of similar spaces found here on the HF hub.
Speech Recognition is based on models from OpenAI Whisper - https://github.com/openai/whisper
This space is using the c++ implementation by https://github.com/ggerganov/whisper.cpp ''' whisper_models = MODELS_TO_DOWNLOAD #["medium"]#["base", "small", "medium", "large", "base.en"] custom_models = [] combined_models = [] combined_models.extend(whisper_models) combined_models.extend(custom_models) LANGUAGES = { "bg": "Bulgarian", "en": "English", "zh": "Chinese", "de": "German", "es": "Spanish", "ru": "Russian", "ko": "Korean", "fr": "French", "ja": "Japanese", "pt": "Portuguese", "tr": "Turkish", "pl": "Polish", "ca": "Catalan", "nl": "Dutch", "ar": "Arabic", "sv": "Swedish", "it": "Italian", "id": "Indonesian", "hi": "Hindi", "fi": "Finnish", "vi": "Vietnamese", "he": "Hebrew", "uk": "Ukrainian", "el": "Greek", "ms": "Malay", "cs": "Czech", "ro": "Romanian", "da": "Danish", "hu": "Hungarian", "ta": "Tamil", "no": "Norwegian", "th": "Thai", "ur": "Urdu", "hr": "Croatian", "lt": "Lithuanian", "la": "Latin", "mi": "Maori", "ml": "Malayalam", "cy": "Welsh", "sk": "Slovak", "te": "Telugu", "fa": "Persian", "lv": "Latvian", "bn": "Bengali", "sr": "Serbian", "az": "Azerbaijani", "sl": "Slovenian", "kn": "Kannada", "et": "Estonian", "mk": "Macedonian", "br": "Breton", "eu": "Basque", "is": "Icelandic", "hy": "Armenian", "ne": "Nepali", "mn": "Mongolian", "bs": "Bosnian", "kk": "Kazakh", "sq": "Albanian", "sw": "Swahili", "gl": "Galician", "mr": "Marathi", "pa": "Punjabi", "si": "Sinhala", "km": "Khmer", "sn": "Shona", "yo": "Yoruba", "so": "Somali", "af": "Afrikaans", "oc": "Occitan", "ka": "Georgian", "be": "Belarusian", "tg": "Tajik", "sd": "Sindhi", "gu": "Gujarati", "am": "Amharic", "yi": "Yiddish", "lo": "Lao", "uz": "Uzbek", "fo": "Faroese", "ht": "Haitian creole", "ps": "Pashto", "tk": "Turkmen", "nn": "Nynorsk", "mt": "Maltese", "sa": "Sanskrit", "lb": "Luxembourgish", "my": "Myanmar", "bo": "Tibetan", "tl": "Tagalog", "mg": "Malagasy", "as": "Assamese", "tt": "Tatar", "haw": "Hawaiian", "ln": "Lingala", "ha": "Hausa", "ba": "Bashkir", "jw": "Javanese", "su": "Sundanese", } # language code lookup by name, with a few language aliases source_languages = { **{language: code for code, language in LANGUAGES.items()} } source_language_list = [key[0] for key in source_languages.items()] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"DEVICE IS: {device}") def get_youtube(video_url): yt = YouTube(video_url) abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() print(f"Download complete - {abs_video_path}") return abs_video_path def run_command(command, app_state): print(command) process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE) while process.poll() is None: time.sleep(5) output = process.stdout.readline() if output == '' and process.poll() is not None: break if output: decoded = output.decode() print(decoded) app_state['output'] += decoded rc = process.poll() print(f'{cmd} ret code is {rc}') return rc def speech_to_text(video_file_path, selected_source_lang, whisper_model, app_state): """ Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp """ if(video_file_path == None): raise ValueError("Error no video input") print(video_file_path) _,file_ending = os.path.splitext(f'{video_file_path}') input_wav_file = video_file_path.replace(file_ending, ".wav") srt_path = input_wav_file + ".srt" vtt_path = input_wav_file + ".vtt" try: print(f'file enging is {file_ending}, starting conversion to wav') subs_paths = video_file_path.replace(file_ending, ".wav") if os.path.exists(subs_paths): os.remove(subs_paths) os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{subs_paths}"') print("conversion to wav ready") except Exception as e: raise RuntimeError("Error Running inference with local model", e) try: print("starting whisper c++") os.system(f'rm -f {srt_path}') run_command(f'./whisper.cpp/main "{input_wav_file}" -t {os.cpu_count()} -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt -ovtt', app_state) # os.system(f'./whisper.cpp/main "{input_wav_file}" -t {os.cpu_count()} -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt -ovtt') print("whisper c++ finished") except Exception as e: raise RuntimeError("Error running Whisper cpp model") print(f'Subtitles path {srt_path}, {vtt_path}') return [vtt_path, srt_path] def create_video_player(subs_files, video_in): print(f"create_video_player - {subs_files}, {video_in}") with open(subs_files[0], "rb") as file: subtitle_base64 = base64.b64encode(file.read()) with open(video_in, "rb") as file: video_base64 = base64.b64encode(file.read()) video_player = f''' ''' print('create_video_player - Done') return video_player # ---- Gradio Layout ----- video_in = gr.Video(label="Video file", mirror_webcam=False) youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True) video_out = gr.Video(label="Video Out", mirror_webcam=False) selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value= source_language_list[0], #"Let the model analyze", label="Spoken language in video", interactive=True) selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value=whisper_models[0],#"base", label="Selected Whisper model", interactive=True) subtitle_files = gr.File( label="Download subtitles", file_count="multiple", type="file", interactive=False, ) video_player = gr.HTML('
video will be played here') eventslider = gr.Slider(visible=False) status_msg = gr.Markdown('Status') output_label = gr.Textbox('', interactive=False, show_label=False) demo = gr.Blocks() demo.encrypt = False def set_app_msg(app_state, msg): app_state['status_msg'] = msg def transcribe(app_state, youtube_url_in, selected_source_lang, selected_whisper_model): app_state['output'] = '' set_app_msg(app_state, 'Downloading the movie ...') video_file_path = get_youtube(youtube_url_in) set_app_msg(app_state, f'Running the speech to text model {selected_source_lang}/{selected_whisper_model}. This can take some time.') subtitle_files = speech_to_text(video_file_path, selected_source_lang, selected_whisper_model, app_state) set_app_msg(app_state, f'Creating the video player ...') video_player = create_video_player(subtitle_files, video_file_path) set_app_msg(app_state, f'Transcribing done, generating video player') return subtitle_files, video_player def on_change_event(app_state): print(f'Running! {app_state}') return app_state['status_msg'], app_state['output'] with demo: app_state = gr.State({ 'running': False, 'status_msg': '', 'output': '' }) with gr.Row(): with gr.Column(): gr.Markdown(INTRO_MSG) gr.Markdown('''### Copy any non-private Youtube video URL to box below or click one of the examples.''') examples = gr.Examples(examples=["https://www.youtube.com/watch?v=UjAn3Pza3qo", "https://www.youtube.com/watch?v=oOZivhYfPD4"], label="Examples", inputs=[youtube_url_in]) # Inspiration from https://huggingface.co/spaces/vumichien/whisper-speaker-diarization with gr.Row(): with gr.Column(): youtube_url_in.render() selected_source_lang.render() selected_whisper_model.render() download_youtube_btn = gr.Button("Transcribe the video") download_youtube_btn.click(transcribe, [app_state, youtube_url_in, selected_source_lang, selected_whisper_model], [subtitle_files, video_player]) eventslider.render() status_msg.render() output_label.render() subtitle_files.render() video_player.render() with gr.Row(): gr.Markdown('This app is based on [this code](https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles/tree/main) by RASMUS.') dep = demo.load(on_change_event, inputs=[app_state], outputs=[status_msg, output_label], every=10) #### RUN ### is_kaggle = os.environ.get('KAGGLE_KERNEL_RUN_TYPE') print(is_kaggle) if is_kaggle: demo.queue().launch(share=True, debug=True) else: demo.queue().launch()