"""Refer to https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py https://python.langchain.com/en/latest/getting_started/tutorials.html """ # pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long import os import time from pathlib import Path from types import SimpleNamespace import gradio as gr from charset_normalizer import detect from chromadb.config import Settings from langchain.chains import RetrievalQA from langchain.docstore.document import Document # Docx2txtLoader from langchain.document_loaders import CSVLoader, PDFMinerLoader, TextLoader # from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.llms import HuggingFacePipeline from langchain.text_splitter import ( CharacterTextSplitter, RecursiveCharacterTextSplitter, ) # FAISS instead of PineCone from langchain.vectorstores import FAISS, Chroma from loguru import logger from PyPDF2 import PdfReader # localgpt from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline # import click # from typing import List # from utils import xlxs_to_csv # load possible env such as OPENAI_API_KEY # from dotenv import load_dotenv # load_dotenv()load_dotenv() # fix timezone os.environ["TZ"] = "Asia/Shanghai" try: time.tzset() # type: ignore # pylint: disable=no-member except Exception: # Windows logger.warning("Windows, cant run time.tzset()") ROOT_DIRECTORY = Path(__file__).parent PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db" # Define the Chroma settings CHROMA_SETTINGS = Settings( chroma_db_impl="duckdb+parquet", persist_directory=PERSIST_DIRECTORY, anonymized_telemetry=False, ) ns = SimpleNamespace(qa=None) def load_single_document(file_path: str | Path) -> Document: """ingest.py""" # Loads a single document from a file path # encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8") encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8") if file_path.endswith(".txt"): if encoding is None: logger.warning( f" {file_path}'s encoding is None " "Something is fishy, return empty str " ) return Document(page_content="", metadata={"source": file_path}) try: loader = TextLoader(file_path, encoding=encoding) except Exception as exc: logger.warning(f" {exc}, return dummy ") return Document(page_content="", metadata={"source": file_path}) elif file_path.endswith(".pdf"): loader = PDFMinerLoader(file_path) elif file_path.endswith(".csv"): loader = CSVLoader(file_path) # elif file_path.endswith(".epub"): # for epub? epub2txt unstructured else: if encoding is None: logger.warning( f" {file_path}'s encoding is None " "Likely binary files, return empty str " ) return "" try: loader = TextLoader(file_path) except Exception as exc: logger.error(f" {exc}, returnning empty string") return Document(page_content="", metadata={"source": file_path}) return loader.load()[0] def get_pdf_text(pdf_docs): """docs-chat.""" text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): """docs-chat.""" text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): """docs-chat.""" # embeddings = OpenAIEmbeddings() model_name = "hkunlp/instructor-xl" model_name = "hkunlp/instructor-large" model_name = "hkunlp/instructor-base" logger.info(f"Loading {model_name}") embeddings = HuggingFaceInstructEmbeddings(model_name=model_name) logger.info(f"Done loading {model_name}") logger.info( "Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)" ) vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) logger.info( "Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)" ) return vectorstore def greet(name): """Test.""" logger.debug(f" name: [{name}] ") return "Hello " + name + "!!" def upload_files(files): """Upload files.""" file_paths = [file.name for file in files] logger.info(file_paths) res = ingest(file_paths) logger.info("Processed:\n{res}") del res ns.qa = load_qa() # return [str(elm) for elm in res] return file_paths # return ingest(file_paths) def ingest( file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type="cpu" ): """Gen Chroma db. torch.cuda.is_available() file_paths = ['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py', 'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md', 'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt'] """ logger.info("Doing ingest...") if device_type in ["cpu", "CPU"]: device = "cpu" elif device_type in ["mps", "MPS"]: device = "mps" else: device = "cuda" #  Load documents and split in chunks # logger.info(f"Loading documents from {SOURCE_DIRECTORY}") # documents = load_documents(SOURCE_DIRECTORY) documents = [] for file_path in file_paths: documents.append(load_single_document(f"{file_path}")) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) logger.info(f"Loaded {len(documents)} documents ") logger.info(f"Split into {len(texts)} chunks of text") # Create embeddings embeddings = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs={"device": device} ) db = Chroma.from_documents( texts, embeddings, persist_directory=PERSIST_DIRECTORY, client_settings=CHROMA_SETTINGS, ) db.persist() db = None logger.info("Done ingest") return [ [Path(doc.metadata.get("source")).name, len(doc.page_content)] for doc in documents ] # TheBloke/vicuna-7B-1.1-GPTQ-4bit-128g def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"): """Gen a local llm. localgpt run_localgpt """ tokenizer = LlamaTokenizer.from_pretrained(model_id) model = LlamaForCausalLM.from_pretrained( model_id, # load_in_8bit=True, # set these options if your GPU supports them! # device_map=1#'auto', # torch_dtype=torch.float16, # low_cpu_mem_usage=True ) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_length=2048, temperature=0, top_p=0.95, repetition_penalty=1.15, ) local_llm = HuggingFacePipeline(pipeline=pipe) return local_llm def load_qa(device: str = "cpu", model_name: str = "hkunlp/instructor-base"): """Gen qa.""" logger.info("Doing qa") # device = 'cpu' # model_name = "hkunlp/instructor-xl" # model_name = "hkunlp/instructor-large" # model_name = "hkunlp/instructor-base" embeddings = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs={"device": device} ) # xl 4.96G, large 3.5G, db = Chroma( persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, ) retriever = db.as_retriever() llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G? qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True ) logger.info("Done qa") return qa def main1(): """Lump codes""" with gr.Blocks() as demo: iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch() demo.launch() def main(): """Do blocks.""" logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}") openai_api_key = os.getenv("OPENAI_API_KEY") logger.info(f"openai_api_key (hf space SECRETS/env): {openai_api_key}") with gr.Blocks() as demo: # name = gr.Textbox(label="Name") # greet_btn = gr.Button("Submit") # output = gr.Textbox(label="Output Box") # greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet") # Upload files and generate embeddings database file_output = gr.File() upload_button = gr.UploadButton( "Click to upload files", # file_types=["*.pdf", "*.epub", "*.docx"], file_count="multiple", ) upload_button.upload(upload_files, upload_button, file_output) # interactive chat chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") def respond(message, chat_history): # bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"]) res = ns.qa(message) answer, docs = res["result"], res["source_documents"] bot_message = f"{answer} ({docs})" chat_history.append((message, bot_message)) time.sleep(0.21) return "", chat_history msg.submit(respond, [msg, chatbot], [msg, chatbot]) clear.click(lambda: None, None, chatbot, queue=False) demo.launch() if __name__ == "__main__": main() _ = """ run_localgpt device = 'cpu' model_name = "hkunlp/instructor-xl" model_name = "hkunlp/instructor-large" model_name = "hkunlp/instructor-base" embeddings = HuggingFaceInstructEmbeddings( model_name=, model_kwargs={"device": device} ) # xl 4.96G, large 3.5G, db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS) retriever = db.as_retriever() llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G? qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) query = 'a' res = qa(query) """