"""Refer to https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py https://python.langchain.com/en/latest/getting_started/tutorials.html """ # pylint: disable=broad-exception-caught, unused-import import os import time from pathlib import Path # import click # from typing import List import gradio as gr from charset_normalizer import detect from langchain.docstore.document import Document from langchain.document_loaders import CSVLoader, PDFMinerLoader, TextLoader # from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.text_splitter import ( CharacterTextSplitter, RecursiveCharacterTextSplitter, ) from langchain.vectorstores import FAISS # FAISS instead of PineCone from langchain.vectorstores import Chroma from loguru import logger from PyPDF2 import PdfReader # localgpt from chromadb.config import Settings # from utils import xlxs_to_csv # load possible env such as OPENAI_API_KEY # from dotenv import load_dotenv # load_dotenv()load_dotenv() # fix timezone os.environ["TZ"] = "Asia/Shanghai" try: time.tzset() # type: ignore # pylint: disable=no-member except Exception: # Windows logger.warning("Windows, cant run time.tzset()") ROOT_DIRECTORY = Path(__file__).parent PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db" # Define the Chroma settings CHROMA_SETTINGS = Settings( chroma_db_impl='duckdb+parquet', persist_directory=PERSIST_DIRECTORY, anonymized_telemetry=False ) def load_single_document(file_path: str|Path) -> Document: """ingest.py""" # Loads a single document from a file path # encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8") encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8") if file_path.endswith(".txt"): if encoding is None: logger.warning( f" {file_path}'s encoding is None " "Something is fishy, return empty str " ) return Document(page_content='', metadata={'source': file_path}) try: loader = TextLoader(file_path, encoding=encoding) except Exception as exc: logger.warning(f" {exc}, return dummy ") return Document(page_content='', metadata={'source': file_path}) elif file_path.endswith(".pdf"): loader = PDFMinerLoader(file_path) elif file_path.endswith(".csv"): loader = CSVLoader(file_path) # elif file_path.endswith(".epub"): # for epub? epub2txt unstructured else: if encoding is None: logger.warning( f" {file_path}'s encoding is None " "Likely binary files, return empty str " ) return "" try: loader = TextLoader(file_path) except Exception as exc: logger.error(f" {exc}, returnning empty string") return Document(page_content='', metadata={'source': file_path}) return loader.load()[0] def get_pdf_text(pdf_docs): """docs-chat.""" text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): """docs-chat.""" text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): """docs-chat.""" # embeddings = OpenAIEmbeddings() model_name = "hkunlp/instructor-xl" model_name = "hkunlp/instructor-large" model_name = "hkunlp/instructor-base" logger.info(f"Loading {model_name}") embeddings = HuggingFaceInstructEmbeddings(model_name=model_name) logger.info(f"Done loading {model_name}") logger.info( "Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)" ) vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) logger.info( "Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)" ) return vectorstore def greet(name): """Test.""" logger.debug(f" name: [{name}] ") return "Hello " + name + "!!" def upload_files(files): """Upload files.""" file_paths = [file.name for file in files] logger.info(file_paths) res = ingest(file_paths) # return [str(elm) for elm in res] return file_paths # return ingest(file_paths) def ingest(file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type="cpu"): """Gen Chroma db. file_paths = ['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py', 'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md', 'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt'] """ if device_type in ['cpu', 'CPU']: device='cpu' elif device_type in ['mps', 'MPS']: device='mps' else: device='cuda' #  Load documents and split in chunks # logger.info(f"Loading documents from {SOURCE_DIRECTORY}") # documents = load_documents(SOURCE_DIRECTORY) documents = [] for file_path in file_paths: documents.append(load_single_document(f"{file_path}")) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) logger.info(f"Loaded {len(documents)} documents ") logger.info(f"Split into {len(texts)} chunks of text") # Create embeddings embeddings = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs={"device": device} ) db = Chroma.from_documents( texts, embeddings, persist_directory=PERSIST_DIRECTORY, client_settings=CHROMA_SETTINGS ) db.persist() db = None logger.info("Done ingest") return [[Path(doc.metadata.get("source")).name, len(doc.page_content)] for doc in documents] def main1(): """Lump codes""" with gr.Blocks() as demo: iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch() demo.launch() def main(): """Do blocks.""" with gr.Blocks() as demo: name = gr.Textbox(label="Name") greet_btn = gr.Button("Submit") output = gr.Textbox(label="Output Box") greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet") file_output = gr.File() upload_button = gr.UploadButton( "Click to upload files", # file_types=["*.pdf", "*.epub", "*.docx"], file_count="multiple" ) upload_button.upload(upload_files, upload_button, file_output) demo.launch() if __name__ == "__main__": main()