"""Refer to https://github.com/abacaj/mpt-30B-inference.""" # pylint: disable=invalid-name, missing-function-docstring, missing-class-docstring, redefined-outer-name, broad-except, line-too-long, too-many-instance-attributes import os import time from dataclasses import asdict, dataclass # from types import SimpleNamespace from typing import Generator import gradio as gr from about_time import about_time from ctransformers import AutoConfig, AutoModelForCausalLM from huggingface_hub import hf_hub_download from loguru import logger from mcli import predict # fix timezone in Linux os.environ["TZ"] = "Asia/Shanghai" try: time.tzset() # type: ignore # pylint: disable=no-member except Exception: # Windows logger.warning("Windows, cant run time.tzset()") URL = os.getenv("URL", "") MOSAICML_API_KEY = os.getenv("MOSAICML_API_KEY", "") if URL is None: raise ValueError("URL environment variable must be set") if MOSAICML_API_KEY is None: raise ValueError("git environment variable must be set") # ns = SimpleNamespace( @dataclass class Namespace: response: str = "" generator: Generator | list = [] ns = Namespace() def predict0(prompt, bot): # logger.debug(f"{prompt=}, {bot=}, {timeout=}") logger.debug(f"{prompt=}, {bot=}") ns.response = "" with about_time() as atime: # type: ignore try: # user_prompt = prompt generator = generate(llm, generation_config, system_prompt, prompt.strip()) print(assistant_prefix, end=" ", flush=True) response = "" buff.update(value="diggin...") for word in generator: # print(word, end="", flush=True) print(word, flush=True) # vertical stream response += word ns.response = response buff.update(value=response) print("") logger.debug(f"{response=}") except Exception as exc: logger.error(exc) response = f"{exc=}" # bot = {"inputs": [response]} _ = ( f"(time elapsed: {atime.duration_human}, " # type: ignore f"{atime.duration/(len(prompt) + len(response)):.1f}s/char)" # type: ignore ) # bot[-1] = [prompt, f"{response} {_}"] bot.append([prompt, f"{response} {_}"]) return prompt, bot # for stream refer to https://gradio.app/creating-a-chatbot/#a-simple-chatbot-demo def predict_api(prompt): logger.debug(f"{prompt=}") ns.response = "" try: # user_prompt = prompt generator = generate(llm, generation_config, system_prompt, prompt.strip()) print(assistant_prefix, end=" ", flush=True) response = "" buff.update(value="diggin...") for word in generator: print(word, end="", flush=True) response += word ns.response = response buff.update(value=response) print("") logger.debug(f"{response=}") except Exception as exc: logger.error(exc) response = f"{exc=}" # bot = {"inputs": [response]} # bot = [(prompt, response)] return response def download_mpt_quant(destination_folder: str, repo_id: str, model_filename: str): local_path = os.path.abspath(destination_folder) return hf_hub_download( repo_id=repo_id, filename=model_filename, local_dir=local_path, local_dir_use_symlinks=True, ) @dataclass class GenerationConfig: temperature: float top_k: int top_p: float repetition_penalty: float max_new_tokens: int seed: int reset: bool stream: bool threads: int stop: list[str] def format_prompt(system_prompt: str, user_prompt: str): """format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py""" system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n" assistant_prompt = "<|im_start|>assistant\n" return f"{system_prompt}{user_prompt}{assistant_prompt}" def generate( llm: AutoModelForCausalLM, generation_config: GenerationConfig, system_prompt: str, user_prompt: str, ): """run model inference, will return a Generator if streaming is true""" return llm( format_prompt( system_prompt, user_prompt, ), **asdict(generation_config), ) class Chat: default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers." system_format = "<|im_start|>system\n{}<|im_end|>\n" def __init__( self, system: str | None = None, user: str | None = None, assistant: str | None = None ) -> None: if system is not None: self.set_system_prompt(system) else: self.reset_system_prompt() self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n" self.assistant = ( assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n" ) self.response_prefix = self.assistant.split("{}", maxsplit=1)[0] def set_system_prompt(self, system_prompt): # self.system = self.system_format.format(system_prompt) return system_prompt def reset_system_prompt(self): return self.set_system_prompt(self.default_system_prompt) def history_as_formatted_str(self, system, history) -> str: system = self.system_format.format(system) text = system + "".join( [ "\n".join( [ self.user.format(item[0]), self.assistant.format(item[1]), ] ) for item in history[:-1] ] ) text += self.user.format(history[-1][0]) text += self.response_prefix # stopgap solution to too long sequences if len(text) > 4500: # delete from the middle between <|im_start|> and <|im_end|> # find the middle ones, then expand out start = text.find("<|im_start|>", 139) end = text.find("<|im_end|>", 139) while end < len(text) and len(text) > 4500: end = text.find("<|im_end|>", end + 1) text = text[:start] + text[end + 1 :] if len(text) > 4500: # the nice way didn't work, just truncate # deleting the beginning text = text[-4500:] return text # def clear_history(self, history): def clear_history(self): return [] # def turn(self, user_input: str): def turn(self, user_input: str, system, history): # self.user_turn(user_input) self.user_turn(user_input, history) # return self.bot_turn() return self.bot_turn(system, history) def user_turn(self, user_input: str, history): history.append([user_input, ""]) return user_input, history def bot_turn(self, system, history): conversation = self.history_as_formatted_str(system, history) assistant_response = call_inf_server(conversation) history[-1][-1] = assistant_response print(system) print(history) return "", history def call_inf_server(prompt): try: response = predict( URL, {"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512}, timeout=70, ) # print(f'prompt: {prompt}') # print(f'len(prompt): {len(prompt)}') response = response["outputs"][0] # print(f'len(response): {len(response)}') # remove spl tokens from prompt spl_tokens = ["<|im_start|>", "<|im_end|>"] clean_prompt = prompt.replace(spl_tokens[0], "").replace(spl_tokens[1], "") # return response[len(clean_prompt) :] # remove the prompt try: user_prompt = prompt generator = generate( llm, generation_config, system_prompt, user_prompt.strip() ) print(assistant_prefix, end=" ", flush=True) for word in generator: print(word, end="", flush=True) response = word print("") except Exception as exc: logger.error(exc) response = f"{exc=}" return response except Exception as e: # assume it is our error # just wait and try one more time print(e) time.sleep(1) response = predict( URL, {"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512}, timeout=70, ) # print(response) response = response["outputs"][0] return response[len(prompt) :] # remove the prompt logger.info("start dl") _ = """full url: https://huggingface.co/TheBloke/mpt-30B-chat-GGML/blob/main/mpt-30b-chat.ggmlv0.q4_1.bin""" repo_id = "TheBloke/mpt-30B-chat-GGML" # https://huggingface.co/TheBloke/mpt-30B-chat-GGML _ = """ mpt-30b-chat.ggmlv0.q4_0.bin q4_0 4 16.85 GB 19.35 GB 4-bit. mpt-30b-chat.ggmlv0.q4_1.bin q4_1 4 18.73 GB 21.23 GB 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. mpt-30b-chat.ggmlv0.q5_0.bin q5_0 5 20.60 GB 23.10 GB mpt-30b-chat.ggmlv0.q5_1.bin q5_1 5 22.47 GB 24.97 GB mpt-30b-chat.ggmlv0.q8_0.bin q8_0 8 31.83 GB 34.33 GB """ model_filename = "mpt-30b-chat.ggmlv0.q4_1.bin" destination_folder = "models" download_mpt_quant(destination_folder, repo_id, model_filename) logger.info("done dl") config = AutoConfig.from_pretrained("mosaicml/mpt-30b-chat", context_length=8192) llm = AutoModelForCausalLM.from_pretrained( os.path.abspath(f"models/{model_filename}"), model_type="mpt", config=config, ) system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers." generation_config = GenerationConfig( temperature=0.2, top_k=0, top_p=0.9, repetition_penalty=1.0, max_new_tokens=512, # adjust as needed seed=42, reset=False, # reset history (cache) stream=True, # streaming per word/token threads=os.cpu_count() // 2, # type: ignore # adjust for your CPU stop=["<|im_end|>", "|<"], ) user_prefix = "[user]: " assistant_prefix = "[assistant]: " css = """ .importantButton { background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; border: none !important; } .importantButton:hover { background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; border: none !important; } .disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;} .xsmall {font-size: x-small;} """ with gr.Blocks( title="mpt-30b-chat-ggml", theme=gr.themes.Soft(text_size="sm"), css=css, ) as block: with gr.Accordion("🎈 Info", open=False): gr.HTML( """
Duplicate and spin a CPU UPGRADE to avoid the queue
""" ) gr.Markdown( """

mpt-30b-chat-ggml (q4_1)

This demo is of [TheBloke/mpt-30B-chat-GGML](https://huggingface.co/TheBloke/mpt-30B-chat-GGML). Try to refresh the browser and try again when occasionally errors occur. It takes about >40 seconds to get a response. Restarting the space takes about 5 minutes if the space is asleep due to inactivity. If the space crashes for some reason, it will also take about 5 minutes to restart. You need to refresh the browser to reload the new space. """, elem_classes="xsmall", ) conversation = Chat() chatbot = gr.Chatbot().style(height=700) # 500 buff = gr.Textbox(show_label=False) with gr.Row(): with gr.Column(): msg = gr.Textbox( label="Chat Message Box", placeholder="Ask me anything (press Enter or click Submit to send)", show_label=False, ).style(container=False) with gr.Column(): with gr.Row(): submit = gr.Button("Submit", elem_classes="xsmall") stop = gr.Button("Stop", visible=False) clear = gr.Button("Clear", visible=True) with gr.Row(visible=False): with gr.Accordion("Advanced Options:", open=False): with gr.Row(): with gr.Column(scale=2): system = gr.Textbox( label="System Prompt", value=Chat.default_system_prompt, show_label=False, ).style(container=False) with gr.Column(): with gr.Row(): change = gr.Button("Change System Prompt") reset = gr.Button("Reset System Prompt") with gr.Accordion("Example inputs", open=True): etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """ examples = gr.Examples( examples=[ ["Explain the plot of Cinderella in a sentence."], [ "How long does it take to become proficient in French, and what are the best methods for retaining information?" ], ["What are some common mistakes to avoid when writing code?"], ["Build a prompt to generate a beautiful portrait of a horse"], ["Suggest four metaphors to describe the benefits of AI"], ["Write a pop song about leaving home for the sandy beaches."], ["Write a summary demonstrating my ability to tame lions"], ["鲁迅和周树人什么关系 说中文"], ["鲁迅和周树人什么关系"], ["鲁迅和周树人什么关系 用英文回答"], ["从前有一头牛,这头牛后面有什么?"], ["正无穷大加一大于正无穷大吗?"], ["正无穷大加正无穷大大于正无穷大吗?"], ["-2的平方根等于什么"], ["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"], ["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"], ["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"], [f"{etext} 翻成中文,列出3个版本"], [f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"], ["js 判断一个数是不是质数"], ["js 实现python 的 range(10)"], ["js 实现python 的 [*(range(10)]"], ["假定 1 + 2 = 4, 试求 7 + 8"], ["Erkläre die Handlung von Cinderella in einem Satz."], ["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"], ], inputs=[msg], examples_per_page=40, ) # with gr.Row(): with gr.Accordion("Disclaimer", open=False): gr.Markdown( "Disclaimer: MPT-30B can produce factually incorrect output, and should not be relied on to produce " "factually accurate information. MPT-30B was trained on various public datasets; while great efforts " "have been taken to clean the pretraining data, it is possible that this model could generate lewd, " "biased, or otherwise offensive outputs.", elem_classes=["disclaimer"], ) with gr.Row(visible=False): gr.Markdown( "[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)", elem_classes=["disclaimer"], ) _ = """ submit_event = msg.submit( fn=conversation.user_turn, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).then( fn=conversation.bot_turn, inputs=[system, chatbot], outputs=[msg, chatbot], queue=True, ) submit_click_event = submit.click( fn=conversation.user_turn, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).then( # fn=conversation.bot_turn, inputs=[system, chatbot], outputs=[msg, chatbot], queue=True, ) stop.click( fn=None, inputs=None, outputs=None, cancels=[submit_event, submit_click_event], queue=False, ) clear.click(lambda: None, None, chatbot, queue=False).then( fn=conversation.clear_history, inputs=[chatbot], outputs=[chatbot], queue=False, ) change.click( fn=conversation.set_system_prompt, inputs=[system], outputs=[system], queue=False, ) reset.click( fn=conversation.reset_system_prompt, inputs=[], outputs=[system], queue=False, ) # """ msg.submit( # fn=conversation.user_turn, fn=predict0, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True, show_progress="full", api_name="predict", ) submit.click( # fn=predict0, fn=lambda x, y: ("",) + predict0(x, y)[1:], # clear msg inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True, show_progress="full", ) clear.click(lambda: None, None, chatbot, queue=False) # update buff Textbox, every: units in seconds) # https://huggingface.co/spaces/julien-c/nvidia-smi/discussions # does not work # AttributeError: 'Blocks' object has no attribute 'run_forever' # block.run_forever(lambda: ns.response, None, [buff], every=1) with gr.Accordion("For Chat/Translation API", open=False, visible=False): input_text = gr.Text() api_btn = gr.Button("Go", variant="primary") out_text = gr.Text() api_btn.click( predict_api, input_text, out_text, # show_progress="full", api_name="api", ) # concurrency_count=5, max_size=20 # max_size=36, concurrency_count=14 block.queue(concurrency_count=5, max_size=20).launch(debug=True)