import os import gradio as gr import requests from PIL import Image import io import numpy as np api_key = 'sk-CED85fi0ZhUDMWg4GvFQ5k53o7yoL7WOaPyPQcb8zPi7eDGi' # your Stability AI API key def stable_diffusion(user_input): prompt = user_input print("Prompt:", prompt) # Create the Stable Difusion image using the Stability AI API response = requests.post( 'https://api.stability.ai/v1/image/generate', headers={'Authorization': f'Bearer {api_key}'}, json={ 'text': prompt, 'model': 'sd-c2', 'steps': 200, 'size': 512, 'start_size': 64, 'start_scale': 1, 'end_scale': 0.25, 'deterministic': False, 'clip': False, 'top_k': 0, 'top_p': 1, 'temperature': 1, 'seed': None, 'noise_seed': None, } ) response.raise_for_status() # Convert the image to a format that Gradio can display img_bytes = io.BytesIO(response.content) img = Image.open(img_bytes) img_arr = np.array(img) return img_arr iface = gr.Interface(fn=stable_diffusion, inputs="text", outputs="image", title="bhAI (text to image)") iface.launch()