midoux05 commited on
Commit
3fb2c56
·
verified ·
1 Parent(s): 26ad049

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -153
app.py CHANGED
@@ -2,12 +2,6 @@
2
 
3
 
4
 
5
-
6
- def install(package):
7
- if hasattr(pip, 'main'):
8
- pip.main(['install', package])
9
- install("speechbrain")
10
-
11
  import torch
12
 
13
  import gradio as gr
@@ -29,95 +23,6 @@ model = separator.from_hparams(source="speechbrain/sepformer-libri2mix", savedir
29
 
30
 
31
 
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
- # MODEL_NAME = "openai/whisper-large-v3"
40
- # BATCH_SIZE = 8
41
- # FILE_LIMIT_MB = 1000
42
- # YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
43
-
44
- # device = 0 if torch.cuda.is_available() else "cpu"
45
-
46
- # pipe = pipeline(
47
- # task="automatic-speech-recognition",
48
- # model=MODEL_NAME,
49
- # chunk_length_s=30,
50
- # device=device,
51
- # )
52
-
53
-
54
-
55
-
56
- # # def transcribe(inputs, task):
57
- # # if inputs is None:
58
- # # raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
59
-
60
- # # text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
61
- # # return text
62
-
63
-
64
- # # def _return_yt_html_embed(yt_url):
65
- # # video_id = yt_url.split("?v=")[-1]
66
- # # HTML_str = (
67
- # # f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
68
- # # " </center>"
69
- # # )
70
- # # return HTML_str
71
-
72
- # # def download_yt_audio(yt_url, filename):
73
- # # info_loader = youtube_dl.YoutubeDL()
74
-
75
- # # try:
76
- # # info = info_loader.extract_info(yt_url, download=False)
77
- # # except youtube_dl.utils.DownloadError as err:
78
- # # raise gr.Error(str(err))
79
-
80
- # # file_length = info["duration_string"]
81
- # # file_h_m_s = file_length.split(":")
82
- # # file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
83
-
84
- # # if len(file_h_m_s) == 1:
85
- # # file_h_m_s.insert(0, 0)
86
- # # if len(file_h_m_s) == 2:
87
- # # file_h_m_s.insert(0, 0)
88
- # # file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
89
-
90
- # # if file_length_s > YT_LENGTH_LIMIT_S:
91
- # # yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
92
- # # file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
93
- # # raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
94
-
95
- # # ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
96
-
97
- # # with youtube_dl.YoutubeDL(ydl_opts) as ydl:
98
- # # try:
99
- # # ydl.download([yt_url])
100
- # # except youtube_dl.utils.ExtractorError as err:
101
- # # raise gr.Error(str(err))
102
-
103
-
104
- # # def yt_transcribe(yt_url, task, max_filesize=75.0):
105
- # # html_embed_str = _return_yt_html_embed(yt_url)
106
-
107
- # # with tempfile.TemporaryDirectory() as tmpdirname:
108
- # # filepath = os.path.join(tmpdirname, "video.mp4")
109
- # # download_yt_audio(yt_url, filepath)
110
- # # with open(filepath, "rb") as f:
111
- # # inputs = f.read()
112
-
113
- # # inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
114
- # # inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
115
-
116
- # # text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
117
-
118
- # # return html_embed_str, text
119
-
120
-
121
  demo = gr.Blocks()
122
 
123
 
@@ -141,62 +46,4 @@ with demo:
141
 
142
  demo.launch(enable_queue=True)
143
 
144
- # mf_transcribe = gr.Interface(
145
- # fn=transcribe,
146
- # inputs=[
147
- # gr.inputs.Audio(source="microphone", type="filepath", optional=True),
148
- # gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
149
- # ],
150
- # outputs="text",
151
- # layout="horizontal",
152
- # theme="huggingface",
153
- # title="Whisper Large V3: Transcribe Audio",
154
- # description=(
155
- # "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
156
- # f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
157
- # " of arbitrary length."
158
- # ),
159
- # allow_flagging="never",
160
- # )
161
-
162
- # file_transcribe = gr.Interface(
163
- # fn=transcribe,
164
- # inputs=[
165
- # gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
166
- # gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
167
- # ],
168
- # outputs="text",
169
- # layout="horizontal",
170
- # theme="huggingface",
171
- # title="Whisper Large V3: Transcribe Audio",
172
- # description=(
173
- # "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
174
- # f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
175
- # " of arbitrary length."
176
- # ),
177
- # allow_flagging="never",
178
- # )
179
-
180
- # yt_transcribe = gr.Interface(
181
- # fn=yt_transcribe,
182
- # inputs=[
183
- # gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
184
- # gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
185
- # ],
186
- # outputs=["html", "text"],
187
- # layout="horizontal",
188
- # theme="huggingface",
189
- # title="Whisper Large V3: Transcribe YouTube",
190
- # description=(
191
- # "Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
192
- # f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
193
- # " arbitrary length."
194
- # ),
195
- # allow_flagging="never",
196
- # )
197
-
198
- # with demo:
199
- # gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
200
-
201
- # demo.launch(enable_queue=True)
202
 
 
2
 
3
 
4
 
 
 
 
 
 
 
5
  import torch
6
 
7
  import gradio as gr
 
23
 
24
 
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  demo = gr.Blocks()
27
 
28
 
 
46
 
47
  demo.launch(enable_queue=True)
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49